De-risking
Government
Technology
Guide

September 2024

2

DE-RISKING GOVERNMENT TECHNOLOGY

CONTENTS

01 Introduction 4

02 Choosing a software solution 10
Commercial (COTS) 12
Custom software 13
Customizing COTS 14
No-code and low-code 18

03 Key principles 20
Modern software development practices 22
Performance-based services contracting 29
Product ownership 30
Setting up for success 33

04 Buying custom software 38
Writing a solicitation 39
Budgeting 51

3

05 Vendor management 54
Introduction 55
Leading product direction 58
Setting up the relationship 66
Reviewing work 71
Maintaining the relationship 85

06 Conclusion 92
07 Resources 96
Market research 98
Evaluating bids 106
Evaluator worksheet 120
Open source security 133
Verbal interview questions 136
Kick-off agenda 142
Quiality indicators plan 144

01

Introduction

D"
VX

Only 13 percent of large government technology projects succeed.’
The majority of these projects fail to deliver working software that
meets the needs of agency staff or the public who must use it.

Why? Agencies at all levels of government face common challenges
at every phase of a project. These include, for instance, the difficulty
of choosing a software approach to serve needs that are often
complex and unique, tension between bureaucratic processes and
modern software development practices, and lacking in-house
knowledge to assess the quality of code.

This guide was written to give government tools to lower the high

risk of failure for technology projects. It addresses two main
challenges — how to choose a software solution and how to work
with a vendor to build quality custom software quickly — in four
main sections. Building one upon the other, this guidance can help
agency staff make and explain choices that can improve a project’s
chances of success.

What’s in this guide

1. Understanding and choosing a software solution, which
explains:

a. The trade-offs between buying commercially available off-
the-shelf (COTS) software and investing in building custom
software

b. When to use COTS or custom software, and why most
projects will require both

c. Why customizing COTS software to serve unique agency
needs increases the risk that a project will fail

1 The Standish Group’s Haze Report, 2015.

6 DE-RISKING GOVERNMENT TECHNOLOGY

2. Four key principles for effective custom software development:

a. Understand and commit to modern software development
practices

b. Use performance-based services contracting

c. ldentify and empower a full-time, in-house product owner to
lead the project

d. Set the team up for success

3. Buying custom software development services, including:

a. How to write a solicitation for a performance-based services
contract

b. Things to keep in mind when budgeting for custom software
development

4. Working with a vendor development team, including:

Approaching vendor management as a partnership

a
b. Leading product direction

o

Setting up the relationship

a

Reviewing work

e. Maintaining the relationship

What’s not in this guide

This guide can’t address every question or situation that comes up
in a government technology project, or every law or regulation that
may apply to a specific project. The guide offers guidelines, models,
and good practices to lower the risk of project failure by helping you
understand what goes into building working software, and how to
keep a custom software project on track.

INTRODUCTION 7

We’ve tried to make the recommendations broadly applicable

and useful for people working at any level of government. As laws
and regulations differ across levels and across states and localities,
we get into specifics only when they are relevant to procurement at a
particular level of government.

The guide is focused on the full life cycle of acquisition activities from
writing a solicitation to evaluating bids, building a positive relationship
with a vendor to managing conflict. But it doesn’t touch on every
aspect of these stages. Where we can link to a resource for further
information, we do.

Who’s the guide for?

e Government staff at the federal or state level who are directly
involved in the procurement and/or post-award phases of
technology acquisition

e Government product owners and program or technical staff who
want to understand how the buying process affects product delivery

e Government employees involved in planning, reviewing, budgeting
for, and approving technology projects

Who are we? Why trust us?

We’re federal employees who work for 18F, a group within Technology
Transformation Services at the General Services Administration. Since
2014, 18F teams have partnered with federal and state agencies to
help them acquire human-centered technology systems and services,
as well as build and update systems, processes, and culture. We're
contracting officers, technologists, researchers, designers, engineers,
and product managers.

https://18f.gsa.gov/

8 DE-RISKING GOVERNMENT TECHNOLOGY

History and authors

The De-risking Government Technology Guide consolidates content
from the two parts of the original De-risking Guide: the “State
Software Budgeting Handbook,” released in August 2019, and

the “Federal Agency Field Guide,” released in September 2020. In
addition, the new section “Working with a software development
team” includes detailed guidance about vendor management.

These updates were made possible by the Office of Management
and Budget’s Facing a Financial Shock initiative. From May 2023 to
June 2024, this funding enabled an 18F team to assess the feasibility
of solutions to common challenges within state government IT
acquisition, such as knowledge and skill gaps, focus on planning
over results, and bureaucracy. After identifying vendor management
to be a major area of concern among agency staff, the team took this
opportunity to revise the De-risking Guide with relevant content.

The current guide reflects the contributions of many current and
former 18F staff:

e Authors of the State Software Budgeting Handbook
o Robin Carnahan, Randy Hart, and Waldo Jaquith
e Authors of the Federal Agency Field Guide

o Mark Hopson, Victoria McFadden, Rebecca Refoy, and
Alicia Rouault

e Contributors to the Federal Agency Field Guide

o Alan Atlas, Heather Battaglia, T. Carter Baxter, Kelsey Foley,
Waldo Jaquith, Ryan Johnson, Brandon Kirby, lan Lee, Miatta
Myers, Steven Reilly, Stephanie Rivera, Peter Rowland, and
Greg Walker

INTRODUCTION 9

e Authors and editors of this version of the De-risking Government
Technology Guide

o Alan Atlas, Elizabeth Ayer, Brian Burns, Stacy Dion, Randy Hart,
Mark Hopson, Selena Juneau-Vogel, Miatta Myers, Laura Poncé,
Peter Rowland, Amelia Wong, and Lindsay Young

With thanks to:

e GSA’'s 10x program for enabling the De-risking Guide’s first launch,
including evaluating and selecting the idea and providing phased
funding from 2018 to 2020

All who shared feedback on the guide’s content:

o From 18F: Claire Blaustein, Lalitha Jonnalagadda, Amanda
Kennedy, Jason Nakai, Allison Norman, Cale Rubenstein

o From Technology Transformation Services: Davida Marion

o The several state employees who participated in user research

Igor Korenfeld for designing the guide’s PDF template

Mel Choyce for designing new visual elements, updating the layout,
and refining the PDF template

Nate Borrebach for building the new online version

Komal Rasheed for her invaluable guidance and support throughout
the entirety of the Facing Financial Shock project

We welcome feedback on the guide. Please contact us through the
18F Guides GitHub repo or email 18f@gsa.gov.

https://www.performance.gov/cx/life-experiences/facing-a-financial-shock/
https://10x.gsa.gov/investments/05-investments-in-tools-for-feds/
https://github.com/18F/guides/issues/new/choose
mailto:18f@gsa.gov

02

Understanding
and choosing a
software solution

11

SUMMARY

Understanding the benefits and risks of commercially available
off-the-shelf (COTS) and custom software will help government
agencies choose a solution appropriate to their needs.

A major reason that government technology projects fail or struggle
is that government agencies often approach obtaining software as a
matter of building or buying it. The reality is more complex.

Many custom-built software systems are composed partly of
commercially available products and services (cloud hosting, for
instance). Meanwhile, agencies frequently buy commercial software
products and then spend additional funds customizing them to suit
their specific needs.

A government technology system is almost always a mixture of
commercial and custom parts. This complexity requires building
thoughtfully and buying differently than has been done in the past. It's
critical to consider the costs and benefits of commercial products and
custom development. One should ask: “Can we buy this piece of the
system without having to customize it?” And: “If we build a custom
piece of software, how do we ensure it is delivered on time, on budget,
and satisfies our users?”

Understanding the benefits and risks of the options, and when each
is appropriate, is necessary to answering those questions and setting
your project up for success.

12 DE-RISKING GOVERNMENT TECHNOLOGY

Commercially available off-the-shelf
(COTS) software

In plain language, commercially available off-the-shelf (COTS)
means software that is sold to the government in the same form it’s
sold to any other consumer.

COTS software is designed to do specific things and is configured
to meet your organization’s needs and preferences. Configuration
of COTS software means making changes to the product’s available
“out of the box” settings. For example, types of configuration include
changing the layout of your email inbox or deciding if a field appears
on a form by turning options on or off. Configuration changes don’t
require customization, which is when a developer modifies the
product’s code base to meet your needs.

SOME BACKGROUND ON COTS SOFTWARE AND ITS
BENEFITS

COTS software, like other commercial items, products, and
services, is promoted and mandated for use at the federal level to
the “maximum extent practicable” thanks to two laws: the Federal
Acquisition Streamlining Act of 1994 (Public Law No. 103-259)

and the Clinger Cohen Act of 1996 (Public Law No. 104-106). The
federal government’s shift towards commercial offerings influenced
many state and local governments as well. Along with the rise of
the internet, these laws changed how the government could buy
information technology. They made commercial items like COTS
software exempt from the more rigorous procurement processes the
government uses to evaluate products and services.

UNDERSTANDING AND CHOOSING A SOFTWARE SOLUTION

The rationale for these changes was that the pressures of a
competitive market were expected to keep costs low and quality high
for consumers. That’s worked well for physical objects, but software
is an inherently different kind of product with a different life cycle.
This essential difference is the source of the government’s risk when
acquiring software from the commercial market.

WHEN TO CHOOSE COTS

COTS is the right choice for meeting a need that many other buyers
have, like email. An agency could develop its own email system, but
it would be a waste of time, money, and effort since existing COTS
email systems come with a wide array of features and functions that
any buyer can use to meet its needs.

Custom software

Custom software refers to software code written specifically for

a buyer’s needs. Rather than being a commercially available item,

custom software is built by a development team working in-house
or through a vendor that builds the product and works with your IT
department to put it into production online for its intended users.

WHEN TO CHOOSE CUSTOM SOFTWARE

If your agency has a unique need that is currently not served

by a large marketplace — something other than email or video
conferencing, for example — you should invest in building custom
software to meet that need. This is a likely scenario for government
agencies, which often have unique requirements and specifications,
as well as laws and policies they must follow.

https://www.acquisition.gov/far/subpart-2.1#FAR_2_101__d75e451
https://www.congress.gov/bill/103rd-congress/senate-bill/1587/text
https://www.congress.gov/bill/104th-congress/senate-bill/1124/text

14 DE-RISKING GOVERNMENT TECHNOLOGY

“Unrecognizably modified off-the-shelf”
(UMOTS) software

If you buy a commercially available off-the-shelf (COTS) product

and then modify it to meet your needs, you are licensing COTS and
paying for custom software development. If those changes are more
than minor (use our test to find out), you may end up with what some
call “unrecognizably modified off-the-shelf software” (UMOTS).

WHY TO AVOID UMOTS — OR BEWARE
CUSTOMIZING COTS

UMOTS describes the frequent and risky tendency of government
agencies to choose a COTS product and then modify it to such

an extent that it is no longer compatible with updates to the core
COTS product. It’s responsible for the failure and struggles of many
government technology modernization projects. Unfortunately,
some vendors often “sell” UMOTS during the solicitation process
with inaccurate or incomplete explanations of a COTS product’s
functionality.

We advise you to avoid UMOTS. It increases the risk of project failure
and eliminates the primary benefit of COTS, which is to not reinvent
the wheel. When you modify a COTS product, it becomes difficult
and expensive to maintain. It may function poorly or not at all. It has
the least amount of transparency and control for the buyer. It typically
results in your agency becoming locked into long-term reliance on a
single vendor (known as “vendor lock-in”).

In the federal context, another reason to avoid extensive modification
of COTS software is that you aren’t complying with regulations. The
Federal Acquisition Regulation (FAR) states that if it is necessary to
make customizations or modifications to the technology to meet

UNDERSTANDING AND CHOOSING A SOFTWARE SOLUTION 15

federal requirements, it isn’t a commercially off-the-shelf item. By
law, only minor modifications are allowed for a product to still be
considered commercial. Minor modifications refer to those that “do
not significantly alter the nongovernmental function or essential
physical characteristics of an item or component, or change the
purpose of a process” (FAR Part 2.101).

You can avoid the risk involved in customizing COTS software if you:
e Use our test questions for identifying UMOTS.

e Conducting thorough market research before and during the
solicitation process. Along with informing you of what’s available,
market research should help you sort out if the agency’s needs are
best served by custom software or by adapting agency processes
to be compatible with a COTS product.

e Use risk mitigation prototyping.

TESTING FOR UMOTS

If you’re thinking about acquiring a COTS solution that would need
any degree of customization to meet an agency’s needs, you could
end up with UMOTS. To avoid that outcome, ask this set of questions.

Will the vendor need to write any software code to enable the
COTS product to meet your requirements and specifications?
If the answer is “yes,” you'll very likely end up with UMOTS. This is
because one or both of these things will happen:

¢ The modification will alter the nongovernmental function of what the
software was originally designed to do.

e The labor costs to change the code will be higher than the base
price (licensing plus sometimes hosting fees) of the product itself.
(Derived from FAR 2.101)

https://www.acquisition.gov/far/2.101
https://www.acquisition.gov/far/2.101
https://www.dsp.dla.mil/Policy-Guidance/FAQs/Commercial-and-Nondevelopmental-Items/

16 DE-RISKING GOVERNMENT TECHNOLOGY

Typically, customizing COTS software results in both things happening.

Modifying a commercial product from its nongovernmental function
takes a lot of developers’ time and effort. As a result, the costs for
that work will almost certainly exceed the base costs.

To know for sure if the new code will result in higher labor than base
costs, add up the proposed cost of labor and compare the sum to the
base cost of the COTS solution.

If the labor costs exceed the base cost, the solution is UMOTS.

If the vendor won’t provide an itemized list of labor costs, it’s also a
sign you will end up with UMOTS.

Has any organization successfully implemented the COTS
solution ...

1. In a similar time frame to the one you’re planning?
2. Within budget?

3. And to the satisfaction of its users?

When it comes to COTS software, you should expect to find — or
that the vendor can supply — at least three examples that clearly
demonstrate successful implementation according to those terms.

If you can’t find those examples, the solution is UMOTS.

Other questions to ask to figure out if
your custom code will result in UMOTS

2 Will modifying the COTS software mean it can no

longer follow the routine schedule for upgrades and
patches?

Once modified, will the vendor own modifications to
the resulting product or system?

Is the COTS vendor being unclear about the cost

& to customize, maintain modifications, or migrate
existing data? Or about ownership of and access to
government data, or how to export data when the
contract ends?

If the answer is “yes” to any of these questions, you’ll likely
end up with UMOTS.

A government technology
system is almost always

a mixture of commercial
and custom parts. This
complexity requires building
thoughtfully and buying

differently than has been
done in the past. It’s critical
to consider the costs and
benefits of commercial
products and custom
development.

UNDERSTANDING AND CHOOSING A SOFTWARE SOLUTION 19

A cautionary note on no-code and low-code software

No-code and low-code software platforms allow you to build
applications with back-end databases without writing any code or
significantly less code. They are being sold aggressively to government
as an alternative to developing custom software applications. This is
an appealing sales pitch for agencies that don’t have the resources

or experience to manage custom software, but these solutions often
require custom development to make them work for agencies’ needs.
While they may seem like easy and fast solutions compared to custom
development, they can actually be more difficult and expensive, and
lead to greater risk of failure.

As with any COTS product, these solutions can be an appropriate
choice when your needs are straightforward and can be served by the
platform’s standard functionality. However, agencies often find out after
they have committed to a no-code or low-code platform that its core
functionality can’t do something the agency needs. The agency must
then pursue custom development to enable additional functionality
within the limitations of the platform, which is often expensive, clunky,
and makes the application more difficult to maintain. In the end, the
agency often has to make compromises and accept a lower level of
performance — while still paying a premium.

The following sections of this guide are specific to writing a solicitation
for and managing custom development projects, so they don’t apply
specifically to implementing a no-code/low-code solution. Still, as
these platforms don’t eliminate the need for careful development
practices, some of the principles for designing, building, and evaluating
applications apply to developing applications regardless of the
underlying technology.

As with any technology project, you may lower risk by selecting the
right technologies to use to build the end product from the beginning.

03

Four key principles
for effective
custom software
development

21

SUMMARY

When contracting a development team to build custom software,
agencies should use performance-based services contracting and
understand modern software development practices, a product
owner’s role, and how to set the team up for success.

If you’ve decided that your needs are best met with custom software,
your goal is to build it in a way that maximizes cost efficiency and
reduces risk through every stage of development.

Many government agencies don’t have personnel who can create
and maintain custom, human-centered software. They must buy the
time and skills of professionals to form a development team to do
that work. In other words, the agency must go through the acquisition
process to procure the services of a vendor. That vendor team

must also be experienced in using modern software development
practices.

These key principles will enable you to contract with a development
team who can build custom software successfully:

1. Understand and commit to using modern software development
practices.

2. Use performance-based services contracting.

3. Identify and empower a full-time, in-house product owner to lead
the project.

4. Set the team up for success.

22 DE-RISKING GOVERNMENT TECHNOLOGY

Principle #1: Understand and commit
to modern software development
practices.

Government agencies have typically used the “waterfall” method for
developing software, which involves a lot of advance planning and
collecting comprehensive requirements at the beginning of a project.
Unfortunately, this approach increases the risk that custom software
development will fail because planning often takes years to complete
and it falsely presumes that all needs can be accounted for before

a project starts. By the time the contract is awarded, the gathered
requirements no longer represent current agency needs, priorities,
and resources.

A less risky approach to building software in government is to use the
modern software development methods and practices defined below.
They will help you plan appropriately, solicit and evaluate vendor
proposals, and acquire professional services with the right experience
and skills.

Five key modern software development methods and practices:
e User-centered design

e |terative and incremental development

¢ Unified development infrastructure

e Service-oriented architecture

e Open source software

USER-CENTERED DESIGN

User-centered design is the practice of building software so that the
people expected to use it can actually use it. In government, users
(sometimes called “end users”) may be government staff

FOUR KEY PRINCIPLES 23

and/or public users. (User-centered design shares many principles
with related fields such as user experience design, customer
experience, and service design.)

User-centered design follows repeating cycles of research with real
users of the software, design, and development. User research
includes interviews, usability testing, and other methods. These reveal
users’ expectations and needs for the software. They also expose
points of confusion and bugs in code.

User research is integral to building working software. Hearing from
end users themselves is the only way to get and understand their
perspectives and ensure that you’re addressing their needs. There
is no substitute for direct user feedback. The perspectives of a
stakeholder who has deep experience with a program or system are
still not representative of a real user.

Insights from user research are often used to write “user stories.” A
user story is written with the syntax:

“As a [role], | need [this thing], so | can [accomplish this].”

For example:

As a social worker, | need case notes to be cached on my phone, so
that | can access case notes in areas without mobile phone service.

User stories, along with technical considerations, inform the design
and development of software. Ideally, user research happens
continually throughout the entire project because user needs may
evolve over time.

24 DE-RISKING GOVERNMENT TECHNOLOGY

Project stakeholders and team members can only guess how users
will use software. Designing with and for users is the only way to
ensure the software will serve their needs.

Consult the 18F User Experience Guide for more detail on
approaches.

ITERATIVE AND INCREMENTAL DEVELOPMENT

Effective software systems are built by a development team that uses
iterative and incremental methods.

Today, one of the most popular versions of iterative development for
building software is called “agile.” lts goal is to test working software
with its intended users as soon as possible to find out if it meets their
needs. And, if not, to correct it quickly so it does.

Agile is an alternative to the waterfall development process described
above. It avoids the risks of using waterfall by empowering a
development team to decide how it builds the product, and to use
practices that enable it to work quickly and change course as needed
based on new information.

There are several methods for practicing agile. The most prevalent
is called “Scrum.” Its key features include a self-organizing team,
customer focus, and responding to change.

A Scrum team usually includes five to nine people. Depending on the
nature of the project, it may include developers, product managers,
user experience (UX) researchers or designers, content strategists,
and/or security experts.

FOUR KEY PRINCIPLES 25

Agile tools and methods support quickly building code and
responding to new information. They act as “sources of truth” and
guardrails for prioritizing and planning work. They include:

e Product vision: a short description of the product’s primary goal

¢ Product roadmap: a high-level diagram of how the team envisions
building the product over time

¢ Product backlog: a list of product features and bug fixes that is
usually written in the user-story format

e Burn-down chart: a graph that visualizes the amount of work left to
be done on a project and how much time it is estimated to take

e Burn-up chart: a graph that visualizes completed work

e Project risks: a list of conditions that could affect the project’s
outcomes and that the team works to mitigate

A Scrum team works in sprints: short, regular cycles of work that may
be as brief as a week and as long as four weeks. Two weeks is the
most common.

On day one of a sprint, the team plans only what it’ll do for that

cycle. At sprint’s end, the team reviews its work, demonstrates the
software to stakeholders, and then plans the next cycle by pulling
user stories from the backlog. This process is repeated until the team
has addressed all of the user stories or the budget for the project runs
out, whichever happens first.

Each sprint, without exception, delivers functioning software: tested,
documented, and ready for use. In this way, the team delivers value

constantly and quickly develops software that is good enough to be
rolled out for broad use, and continues to refine and improve it.

https://guides.18f.gov/ux-guide/research/
https://guides.18f.gov/product/define/vision/
https://guides.18f.gov/product/define/roadmap/

26 DE-RISKING GOVERNMENT TECHNOLOGY

UNIFIED DEVELOPMENT INFRASTRUCTURE

Modern software development practice is grounded in the principle
that there shouldn’t be a division between developing and operating
software. The team that writes the software takes responsibility for
how software performs in production (as a live application or site).
This approach is associated with “DevOps” practices, which also rest
on this principle of a unified development infrastructure.

This is achieved by using automated testing and deployment

tooling that allow the entire process of creating the environment

for deployment, and incrementally updating it, to be scripted and
repeatable. These tools and practices make it possible to make a
change in the code and implement it in the production service almost
instantaneously. They make it easy to make smaller incremental
changes frequently and catch and fix errors.

SERVICE-ORIENTED ARCHITECTURE

Large and complex technology systems are made of smaller
independent components that perform specific functions or services.
All the parts can function together thanks to shared standards and
application programming interfaces (APIs).

Each component’s API contains a set of rules for how to
communicate with it and call on it to perform its specific function.
Systems that are built with this modular architecture are more
flexible and sustainable. By standardizing and documenting the way
components communicate with each other, a developer can focus on
building components independently.

FOUR KEY PRINCIPLES 27

OPEN SOURCE SOFTWARE

Open source software is software with source code that anyone can
inspect, modify, and enhance.

Developers often choose to build with open source software as it has
many benefits. Building with open source technologies, and in an
open code repository, often leads to a better and more secure end
product than proprietary code. (This assumes developers follow best
practices for open source software security.) Open source practices
encourage critical evaluation and participation from contributors.
These practices can lead to suggestions for improvement and
identifying bugs and vulnerabilities. When an open source code base
is used by a strong community of developers, everyone benefits from
this active refinement as it continuously improves the code’s quality
and security.

Since the public funds government software projects, the government
should allow the public to consult and use what it’s paid for. Making
government software projects open source enables the public

— and other agencies — to leverage these investments for their

own purposes. It also increases transparency and makes these
investments publicly accessible and reusable by default.

There are other benefits to open source development for government
technology projects as well:

1. Open source software makes collaboration easier among agencies,
contractors, and the public because it is meant to be reused and
adapted. It allows anyone that uses it to focus on using the code
for their specific needs, rather than having to build and maintain
common features from scratch.

28 DE-RISKING GOVERNMENT TECHNOLOGY

2. The government retains ownership of the code, which reduces the
risk of dependence on a single vendor.

3. It levels the playing field for future procurements and increases
competition. New offerors can review the code to help them decide
if they want to bid and what to include in their proposal.

4. Software developers contribute to open source projects to
demonstrate their skills to colleagues and employers, current or
future. There is a mutual benefit for the contributing developer
and for the project. Public-facing government software tends to
have high visibility and a built-in user base. Making that software
open source cultivates a community of developers and other users
around the project that is invested in making it better.

(Open source software isn’t appropriate for every project, such as
when an agency doesn’t have the rights to reproduce and release
the code. Or, when publicly releasing the item is restricted by a law
or regulation, such as the Export Administration Regulations or the
International Traffic in Arms Regulation.)

FOUR KEY PRINCIPLES 29

Principle #2: Use performance-based
services contracting

Software developers as a labor category and profession qualify as
“commercially available” and “professional services” under the FAR.
To acquire the time and expertise of a team experienced in modern
software development services, you must use performance-based
acquisition methods for the solicitation, competition, and evaluation
of proposals.

Performance-based services contracting (PBSC) stresses that all
aspects of an acquisition must be structured around the purpose of
the work to be performed, and involve a way to assess contractor
performance objectively rather than dictating the manner in which the
work is to be performed.

This approach to contracting professional services ensures that:

e Contractors are given freedom to determine how to meet the
government’s performance objectives.

e Appropriate levels of quality in performance are achieved.

e Payment is made only for services that meet those levels.

Learn about the solicitation process for performance-based services
contracting.

https://www.acquisition.gov/far/subpart-37.6

30 DE-RISKING GOVERNMENT TECHNOLOGY

Principle #3: Identify and empower a
full-time, in-house product owner to
lead the project

Modern software development is led by a product owner. In tech
lingo, a product is the thing a development team builds. It may be a
website, mobile app, data service, intranet application, etc. A product
owner is the individual responsible for making sure the team builds

a thing that serves the needs of its users, as confirmed by research.
They receive and review a vendor team’s work.

A product owner works closely with the team to ensure its work

is focused on creating a product that meets its users’ needs and
organizational goals. Their daily work includes deciding on priorities,
adjusting direction based on feedback, and communicating with
stakeholders. Unlike a project manager, who focuses on planning and
monitoring projects, a product owner’s focus is on the product’s value
to users and the team’s quality of work and well-being. They choose
among priorities throughout the project, weighing the best response
to information as it arises, and the value and impact of change versus
stability.

Slow product decision-making is a common problem for development
teams. To avoid it, the product owner must be available to the team
and empowered by the organization. Specifically, the product owner
of a government technology project must be:

¢ An individual, not a committee.
e Employed by the agency the product is being built for.

¢ Assigned at least half-time to the project, ideally full-time —
especially for large or high-priority projects.

¢ Permitted to make most decisions about the product’s development
without having to seek approval from stakeholders.

FOUR KEY PRINCIPLES 31

A product owner doesn’t need to be an expert in technology. A strong
product owner understands the needs of the product’s users, the
goals of the organization and any legal, technical or policy constraints
that need to be weighed in decisions.

While it’s possible for a product owner to learn “on the job,” it’s better
that they receive formal training in agile product ownership. Free or
paid training is offered online and in person through many sources
(such as the 18F Product Guide). If the product is critical to the
agency, the product owner should have prior experience in modern
software development practices or access to an experienced

product coach.

LEADERSHIP’S ROLE IN A CUSTOM SOFTWARE
DEVELOPMENT PROJECT

Agency leadership’s role in custom software development is to
create an environment where modern software development practice
is possible.

Leadership is responsible for declaring what is important from the
perspectives of policy and operations, and any concrete constraints
the team must work within. They should be ready to take action
when questions arise that fall outside the product owner or team’s
responsibilities. They are also responsible for enabling the team to
work in new ways and giving them space to innovate to meet

the goals.

It’s essential for the project’s success that leadership make it an
organizational priority to support modern software methods, and
work to align governance and oversight processes to permit their use.
For example, if an agency has traditionally used waterfall processes
to develop software, including expecting detailed documentation of

32 DE-RISKING GOVERNMENT TECHNOLOGY

requirements, these management practices will make it impossible for
the team to adjust course based on user feedback. Leadership should
spearhead the effort to shift an organization’s culture and policies to
enable iterative software development or people will be discouraged
from trying it again. This is especially important as learning new
methods takes time and will involve missteps.

Other responsibilities for leadership include:

¢ Providing funding

¢ Helping overcome internal challenges

e Serving as authorizing officials in security accreditations

¢ Nearing launch of the software, facilitating internal and external
communications

It can be helpful for leadership to be involved in helping to set the
product vision, reviewing the roadmap as it relates to organizational
strategy, and seeing demos of the software.

There’s no one-size-fits-all approach. The degree that leadership
should be involved in the project depends on the nature of the
challenge, organizational culture, and work preferences of individuals.

FOUR KEY PRINCIPLES 33

Principle #4: Set the team up for
success

Before you award a contract, there are some things to do that
will make it possible for the development team to work efficiently
and productively from day one of a project. These reduce the risk
of delays and wasting funds. Ideally, these are addressed before
onboarding a vendor development team.

HIRE TECHNICAL STAFF IN-HOUSE, IF NEEDED

If your agency doesn’t have leadership, budgeting, or technical staff
who have experience with modern software development practices,
it’s missing knowledge and skills that are crucial for budgeting for and
building custom software successfully.

It may be tempting to rely on vendors to fill this gap. Or, if you’re at

a state agency, the state’s central IT department. But, agencies are
best served by in-house staff who have technical knowledge and
understand the software’s relationship to the agency’s mission. They
can both confidently represent the contract and assess the quality of
the vendor team’s performance.

To determine if your budget office or leadership has the necessary
experience to consider software requests or lead software projects,
ask around. All but the smallest agencies will have technical staff
who can join project leadership. There are few budget offices who
currently employ software developers.

If your agency lacks staff with the technical knowledge to pursue a
custom software project successfully, you’ll need to hire someone
who does — even if only seasonally or on contract. Your best bet is

34 DE-RISKING GOVERNMENT TECHNOLOGY

a developer or designer with experience building modern software,
ideally for the government.

The cost of bringing in a developer or training current employees in
modern development practices is tiny in comparison to the cost of
a custom software project. Plus, once you have that knowledge in
house, it can be drawn upon for future projects.

Software is never “done.” It will always need to adapt to changing
user needs, technology, policy, regulations and laws. To properly
maintain it, you must have developers on staff who fully understand
the program or system.

ALLOW FOR AND PROVIDE SUPPORT FOR A
REMOTE TEAM

Allowing for the development team to work remotely will give you
access to the best development resources in the United States. It
will also likely lower costs while increasing competition. There’s a
significant difference in the salary of software developers in the most
expensive and least expensive states, and small businesses will be
able to enter the vendor pool.

Remote collaboration is easy with modern online tools. An
agency product owner can communicate daily with a distributed
team through any number of available tools that support video
conferencing, instant messaging, task management, collaborative
whiteboarding and document editing.

Government agencies often struggle with enabling remote
collaboration due to network restrictions and software approval
policies. Ensuring a remote vendor team can be productive from day

FOUR KEY PRINCIPLES 35

one of a project requires making sure they can access such tools well
before work begins.

Determine which collaboration tools teams will need and make those
available to them. As an interim step, agencies may want to develop
a provisional Authorization to Operate (ATO) process for piloting tools
that are relatively low risk. This process could inform decisions about
which tools should go through the ATO process to be rolled out more
broadly.

CLEAR THE “PATH TO PRODUCTION”

Unlike in the private sector, making government systems available
to end users is a highly regulated and scrutinized activity. It requires
technical, legal, legislative, and other approvals, along with extra
layers of development.

Before publishing a solicitation, figure out the process for getting a
vendor team access to the hosting and deployment environments
necessary for testing and launching the software, and make sure they
have access to them. In other words, clear any bureaucratic obstacles
the vendor team could experience in the “path to production” and
document the path clearly and comprehensively. (To find out if code
can be deployed to the needed environments, you can: 1) prototype

a solution or 2) talk to agency technical staff. Ideally, do both.) If this
process for access is not done before a team is onboarded, it can
result in wasted time and effort, as well as frustration.

Each agency will have its own set of processes, rules, and
regulations around security clearances. (For instance, the Homeland
Security Presidential Directive 12 Policy applies across the federal
government.) To streamline work that concerns security issues, write
a requirement into the contract that the vendor must delegate an

https://www.bls.gov/oes/current/oes151132.htm#IDX701
https://www.dhs.gov/homeland-security-presidential-directive-12

36 DE-RISKING GOVERNMENT TECHNOLOGY

individual to act as the security clearance liaison (a point of contact
for all questions and requests) for the project.

An agency that meets the following criteria can feel confident they
can award an agile software development contract and that the
vendor onboarding process will be relatively smooth:

e There is access to a hosting environment, administered by an
employee at the agency.

e There is an organizational account on a social code repository (for
example, GitHub, GitLab, or Bitbucket) for the agency, administered
by one or more employees of the agency.

e There is a process by which changes made to code on the
repository are automatically deployed to the hosting environment
and the agency has the ability to release frequently (i.e., a unified
development architecture).

PROTOTYPE TO LEARN

Prototyping is an exercise that will help you understand your agency’s
ability to support an agile software development project in terms of
technology, human resources, and policy.

The exercise can be as simple as publishing a single “Hello, world”
webpage. It should answer these questions:

¢ What is the administrative process to gain access to the hosting
and deployment environment?

e What processes or policies does a software team need to work
through to get access to services and deploy applications to them?

e Which stakeholders are required for approvals? What things do they
need to approve? What form do applications for approval take?

FOUR KEY PRINCIPLES 37

This work will help the team understand their tool preferences and
document internal processes. The prototype can also be useful as
supporting documentation in an RFP or to give to the winning vendor.

ASK QUESTIONS OF AGENCY TECHNICAL STAFF

Invite relevant technical staff at your or your partner agency to a
meeting to get answers to these questions:

e How are existing digital products hosted and deployed? Who is
involved in those processes?

e How do we get access to the agency’s deployment environment
(for example, cloud.gov, Amazon Web Services, Microsoft Azure,
on-premise servers)?

¢ Are there existing technology stacks, solutions or components
that are approved for use or that are recommended? Are there
preferences for any of the options?

Having clear answers to these questions is the minimum amount of
information an agency should have going into a build. If the answer
to these questions are unknown, or the answers are murky, more
investigation is needed prior to publishing an RFP.

04

Buying custom
software
development
services

39

SUMMARY

Learn about the elements of a solicitation for a performance-
based services contract, and tips on how to budget for technology
projects so they can be pursued iteratively and incrementally.

To acquire a development team to build custom software using
modern software development practices, you should use a
performance-based services contract. That begins by writing a
solicitation in the way outlined in this section. You should also plan
budgeting for technology projects so it can support an iterative and
incremental approach.

Writing a solicitation for a performance-
based services contract

A solicitation is the document that articulates an agency’s need for
a product or service in terms that enable businesses to submit bids
or proposals within a competitive bidding process. Agencies have
different terms for solicitations, including Request for Proposal
(RFP), Request for Quote (RFQ), and Request for Offers (RFO),
among others.

The general solicitation process has three steps:

1. An agency writes a solicitation to seek industry help to satisfy
a need.

2. Industry reviews and responds to the solicitation with proposals for
satisfying the agency’s need.

40 DE-RISKING GOVERNMENT TECHNOLOGY

3. The agency picks the proposal it has determined to be the
strongest offer with the least amount of risk.

This section explains what happens in the first step in the process:
market research and the writing of the solicitation. The second step
occurs in the vendor context. On the third step, refer to our guidance
on evaluating proposals and bids.

CONDUCTING MARKET RESEARCH TO IDENTIFY
SUGGESTED SOURCES

Every solicitation begins with the agency conducting market research,
which continues throughout the process of writing the solicitation.

The FAR defines market research as “collecting and analyzing
information about capabilities within the market to satisfy agency
needs.” (“Needs” and “requirements” are often used interchangeably
in the market research context.)

Done well, market research shapes the final product as well as a
product’s requirements. If market research is done poorly, the project
will face issues from the beginning, including delays in the schedule,
increased costs and, ultimately, unsatisfied users.

Consult our detailed guidance for conducting market research in the

resources section.

WRITING THE SOLICITATION USING 18F’S AGILE
CONTRACT FORMAT

Our Agile Contract Format has three elements:

BUYING CUSTOM SOFTWARE DEVELOPMENT SERVICES 41

1. A statement of objectives for performance-based services

2. A time-and-materials type contract

3. A Quality Assurance Surveillance Plan (QASP) that defines the
expectations of quality that will be monitored throughout the
contract using specific indicators

The solicitation also spells out a rationalized competitive award
process to potential vendors and the evidence-based evaluation
methods that will be used to evaluate bids and proposals.

Statement of objectives for performance-based services

FAR Part 37.601 states a performance-based solicitation may either
be a performance work statement (PWS) or a statement of objectives
(SO0).

We use a statement of objectives for the purpose of competition
since, unlike a performance work standard, it requires industry to
produce evidence that will help you evaluate proposals. A statement
of objectives requires these six elements:

e Purpose
e Scope or mission

e Period and place of performance

Background

Performance objectives (that is, required results)

¢ Any operating constraints

https://www.acquisition.gov/far/2.101
https://www.acquisition.gov/far/37.601

42 DE-RISKING GOVERNMENT TECHNOLOGY

18F has created a statement of objectives template for writing a
solicitation for agile software development services. (Download the
template (Microsoft Word).) To use our template to create an Agile
Contract Format, you will plug agile artifacts into the sections as
follows:

SO0 section Agile analog

Scope or mission Product vision

Performance objectives (that is, required | Product backlog
results)

Any operating constraints Non-functional requirements

Time-and-materials type contract

A time-and-materials (T&M) type contract is used for acquiring
services at fixed hourly rates for labor, and supplies or materials used
to create and/or make the end product available to users.

You will use a T&M type contract with a not-to-exceed ceiling to buy
the time and expertise of a development team that will use modern
software development methods to build a product. (A T&M contract
is preferred to a Labor-Hour (LH) type contract when acquiring
professional software development services for the reason that it
enables a team to buy any tools or services they need to build the
software and enable its functionality. For example, the team may
need to pay a service provider to support SMS messaging in an
application.)

A T&M contract gives the development team the flexibility, freedom,
and professional discretion it needs to develop software iteratively
based on user research. It also allows them to respond to changes
that arise on the program side, such as shifts in priorities or
resources. For instance, if the government decides to terminate early
for some reason, such as a change in priorities or the vendor is not

BUYING CUSTOM SOFTWARE DEVELOPMENT SERVICES 43

performing, this type of contract enables it to do so without having

to go through the burdensome termination procedures that come
with other types of contracts, and to still own the software that has
been delivered up to that point. Work just stops being assigned to the
vendor (such as through the product backlog) and they can’t bill their
time to the government.

For software projects, a T&M contract protects the government’s
financial and performance interests better than other contract types.
The vendor bills on an as-needed basis and only for actual time
incurred. Each submitted invoice must provide exact billing data.
(Firm-fixed-price type contracts don’t provide this protection as work
is performed over time and submitted invoices lack detail.) A T&M
contract dissuades vendors from falsifying invoices since the FAR
deems false invoices a “false claim” and exposes the vendor to the
risk of paying triple the initial damages for each instance.

Every T&M type contract requires a dollar ceiling and can’t exceed
three calendar years in duration in order to reduce the risk of the
project going over budget.

We use a not-to-exceed (NTE) ceiling, provided regardless of the
actual proposal price from potential bidders, to allow for the iterative
nature of modern software development.

The FAR states that a T&M contract is not supposed to exceed three
calendar years. Consequently, the period of performance is between
one to three calendar years in total. (18F’s Determinations & Findings
artifact (Microsoft Word) provides a full justification for using T&M
type contracts and explains this aspect in depth.)

https://www.acquisition.gov/far/subpart-16.6#FAR_16_601__d1049e207
https://18f.gsa.gov/assets/presentations/agile-software-development-solicitation-template.docx
https://18f.gsa.gov/assets/presentations/determinations-findings-for-a-time-and-materials-contract-type-sample.docx

44 DE-RISKING GOVERNMENT TECHNOLOGY

Quality indicators defined in a Quality Assurance Surveillance
Plan (QASP)
The FAR allows for a range of ways to establish and monitor contract

performance. Quality indicators for software development are best
declared through a well defined, objective set of criteria that serve as
an assessment tool for both the government agency and the vendor.
At the federal level, these criteria are put into a Quality Assurance
Surveillance Plan (QASP).

The QASP is the most rigorous way to oversee vendor performance.
Waterfall projects often collect a long list of functional requirements
before work begins and involve written status updates. In contrast,
the QASP is focused on criteria that can be verified objectively and
continuously throughout the performance period. The QASP sets
the standard that, at the end of each sprint, all code is delivered

to a government-owned repository and must be complete, tested,
accessible, deployed, documented, and secure.

You can include this sample QASP, which covers a minimum set of
quality indicators, without any changes in your solicitation. Modify it
to meet your specific needs if necessary.

At the federal level, the government can allow a vendor to provide
their own QASP. We strongly advise against this. If you allow the
vendor to define its own measures of success, you give up one of the
most powerful tools the government has for monitoring and ensuring

quality.

Learn about the elements of a QASP and how to use them.

BUYING CUSTOM SOFTWARE DEVELOPMENT SERVICES 45

Rationalized, competitive award process

The competitive award process to acquire an outsourced
development team varies for federal, state, or local agencies due to
different acquisition laws.

Market research

Pre-release

* 3 .
." Release draft ‘-‘ ' Government and vendors discuss its strategy and contents so
K solicitation /; i the government can refine a final draft
. /
- 1,

<.-------.

Procurement

Ideal timeframe: 1-6 weeks

Release Vendors ask questions about G > Government amends solicitation
solicitation solicitation in response to questions

V
Ideal timeframe: 1-6 weeks
Vendors submit final Government evaluates Government announces
proposals proposals award
v
Post-award

At the federal level, for example, the process ideally takes four to 12
weeks from release to award. It includes these steps:

¢ (Optional) Release a draft solicitation as part of market research.
Government and vendors discuss its strategy and contents so the
government can refine a final draft.

¢ Release the solicitation.

https://www.acquisition.gov/far/part-46#FAR_46_201
https://www.acquisition.gov/far/37.604

46 DE-RISKING GOVERNMENT TECHNOLOGY

e Vendors ask questions. Government amends the solicitation in
response to questions.

e Vendors submit final proposals.

e Government evaluates proposals. Verbal interviews occur, if
included in the process.

e Government documents award decision.

e Government announces award.

(The optional step to release a draft solicitation during market
research is included because it’s more likely to result in qualified
proposals than a Request for Information (RFI), which is more
commonly used. Further, verbal interviews are mentioned because
18F strongly recommends them to validate the approach provided in
written proposals.)

The solicitation should require bidders to keep proposals under 10
pages. We recommend a hard limit of five pages, with the narrative
sections kept to two to three pages each. Short proposals can:

¢ Increase and make competition more equitable by reducing the
effort to create them. (New and small businesses don’t always
have the dedicated resources for writing proposals that larger
companies do.)

¢ Reduce the likelihood of vendor protest.

¢ Reduce the time and work government staff spend evaluating
the proposals.

Note: If vendors request more narrative space, it indicates one of
two things:

¢ The vendor might not be experienced or comfortable working
with an iterative approach to software development. A vendor
experienced in responding to more traditional solicitations for

BUYING CUSTOM SOFTWARE DEVELOPMENT SERVICES 47

waterfall development will be used to providing long, detailed
explanations of how they would meet every requirement. Don’t

let vendors’ requests for more narrative space dissuade you from
keeping a page or word limit. We’ve found most vendors appreciate
the request for brief explanations.

e The government’s request was poorly written and is confusing to
potential bidders.

Evidence-based evaluation methods
A solicitation explains the factors and methods the agency will use for
evaluating proposals.

Agencies often include factors in solicitations that don’t enable them
to discern risk or meaningfully judge the content of proposals. These
add significant amounts of time and effort to the evaluation process
with little benefit.

Our approach uses only four key factors: technical approach, staffing
approach, similar experience, and price.

Proposals are evaluated as follows:

e Technical approach, staffing approach and similar experience will
be given more weight than price.

e Proposals will not be evaluated by a numeric point or color
scoring scheme. Instead, each member of the evaluation team
will review each proposal and list its pros and cons. The whole
team will discuss the proposals’ pros and cons to determine the
strongest ones.

e Evaluation teams may use whatever materials are available beyond
the proposals to help them decide: websites, news articles,
samples of prior work, etc. (Include a statement in the solicitation
that the government may use such information at its discretion.)

48 DE-RISKING GOVERNMENT TECHNOLOGY

Technical approach

Inform vendors their proposed technical approach will be evaluated
for how it describes its approach to modern software development
practices. In particular, ask them to include the process they will
follow to meet the solicitation’s quality expectations for the software.
Ask them also to identify any risks they anticipate in regard to the
specific project’s development effort and how it would address them.

Staffing approach

We’ve found that how a vendor proposes to staff a project is a

strong indicator of how much experience they’ve had in working in
iterative ways. As a result, the solicitation should inform vendors that
evaluation of their proposed approach to staffing the project will focus
on the stated skills and team composition.

Adding a key personnel clause

At the federal level, you may add a “key personnel” clause to the
solicitation. It requires a vendor submitting a proposal to supply the
résumés of the people proposed for certain positions and establishes
that the government will approve any proposed replacements. Its

purpose is to ensure that the vendor team committed throughout the
contract operates at an equivalent level of experience and expertise to
the key personnel included in the vendor’s proposal.

For that reason, the key personnel clause is typically perceived as a
quality control measure. But, requiring vendors to specify dozens of key
personnel comes with some risks.

Before using a key personnel clause, consider:

® Most bidding vendors will not have enough people “on the bench” at
the time of proposal to be able to commit to assigning them to the
project when the contract is awarded. If a vendor that has committed
key personnel gets the contract, they are then required to put those

BUYING CUSTOM SOFTWARE DEVELOPMENT SERVICES 49

people on the project. As those staff are functionally benched until
the contract is awarded, it can increase a bidding company’s costs,
as well as the likelihood of protests. The more a company invests or
risks to make a bid, the more likely it will dispute a decision not to go
with its proposal.

® The market for skilled developers is fluid. It’s not possible for a
company to lock down all key personnel months before the actual
work might begin on a contract.

If you choose to use the key personnel clause, ask vendors to specify
two or three positions at most: a project lead, a technical lead and,
optionally, a design lead.

Finally, ask that all named key personnel participate in a verbal
interview: a timed, unstructured question-and-answer session in which
they will answer questions about the proposal’s technical approach.
Verbal interviews will allow the agency to better understand each
contractor’s proposed technical approach and to observe key personnel’s
interactions and working style. They are a critical quality control measure
that confirms the information provided in the written proposal. Verbal
interviews don’t allow contractors to make presentations, ask questions,
or change their submission in any way. (They are not FAR Part 15 oral
presentations).

Verbal interviews should be tailored to each proposal. Consult our sample
interview question bank in the Resources section.

Similar experience

Actual code is a far better indicator of how a vendor team is likely to
perform under real-world conditions than exercises like “bake-offs”
or “hackathons.” Similar experience is best evaluated by reviewing
concrete evidence of the vendor’s work so you may assess its quality.

The solicitation should ask the contractor to submit code repositories
similar in size, scope, and complexity to the work that the agency is
undertaking.

https://www.acquisition.gov/hudar/2452.237-70-key-personnel.

50 DE-RISKING GOVERNMENT TECHNOLOGY

Ask for links to two or three source code repositories that illustrate
the work of the company or technical lead and other relevant key
personnel. This may include examples from previous employment or
volunteer projects, since many contractors won’t have had clients
willing to work in the open and thus no public code repositories to
share. If a private repository is shared, the vendor must promptly
provide access to the government-provided Git users.

Price

To evaluate price, you will calculate a total estimate by looking at the
number of people, their allocation (part time, full time, etc.) and the
hourly rate for their labor. The ideal size of a Scrum team is between
four to nine people. A typical team has six. A Scrum team never has
more than 10.

Before you send out a solicitation, you must also create an
independent government cost estimate (IGCE). This will give you a
baseline against which to judge the cost of proposals.

Use GSA’s Contract-Awarded Labor Category tool to estimate the
average hourly labor rate. (The average hourly labor rate will fluctuate
over time based on contract awards. The contracting officer judges
what is reasonable comparison pricing for labor.) Then, multiply that
number by a reasonable number of hours that a person would be
expected to work in a given year. For example, 1,880 working hours a
year accounts for holidays and some leave.

The table below represents a sample IGCE. It assumes nine people
and represents a typical mix of talent on a Scrum team. Based on
average hourly labor rates as of June 2024, in this sample scenario
the IGCE for one year of performance is $1.96 million.

BUYING CUSTOM SOFTWARE DEVELOPMENT SERVICES 51

Sample independent government cost estimate for a vendor
Scrum team for one year

Position title* # of people | Average hourly | Estimated cost

*k
labor rate (# of people x avg. hourly

labor rate x 1,880)

Senior Software Developer 1 $139 $261,320
Senior Designer 1 $119 $223,720
Software Developer 3 $120 $676,800
Designer 3 $97 $547,080
Content strategist 1 $136 $255,680
Total $1,964,600

* Vendors will propose different labor categories or skill mixes based on how they

typically operate and what they assume the work will entail. Expect position titles to
vary based on the competition pool and the skills needed for a project. For example,
“Senior UX Designer,” “Senior Product Designer,” “UX Designer or Researcher,” etc.

** If an agency requires the development team to be on-site or have top-secret security
clearances, expect the average hourly labor rates to be substantially higher and that
fewer companies will be able compete for the work. The clearance process itself is

an added cost. Also, hourly rates for these positions vary depending on where an
individual team member lives within the United States.

Check out our in-depth guidance on how to evaluate proposals and
bids and use our sample evaluator worksheet to help determine the
strongest proposals.

Budgeting for custom software
development
Government budget and appropriation processes and cycles typically

run over one or two years. As a result, agencies must request funds
for technology projects many months or even years before they can

https://buy.gsa.gov/pricing/qr/mas?page=1&page_size=20&histogram=12&experience_range=0,45&price__gte=15&price__lte=500&ordering=current_price&acceptsDataDisclosure=true&sort=asc&price_range=15,500

52 DE-RISKING GOVERNMENT TECHNOLOGY

begin. For example, a budget request made in the first year of a
project may take two years to get approval. The contract may not be
awarded until three years later. The software needed at the time of the
budget request may not be delivered until five or more years

have passed.

Because this process takes years, government agencies will often
decide to pursue building or updating large, complex systems through
one big contract because it seems like the most efficient way forward.
However, this approach makes the project more likely to fail because
it doesn’t account for changes in agency needs that will occur

over time.

A less risky way to build or modernize a major system is to embrace
iterative and incremental approaches in budgeting as well as in
software development. Start small rather than let your project
snowball into something that’s too big to succeed.

SMALL PROJECTS, SMALL BUDGET ALLOCATIONS

Large technology systems are made up of smaller component
systems. To lower the risk that building or updating a large system will
fail, carve a large project into several small ones and budget for these
in small, incremental budget allocations.

A modular approach to budgeting for and building a large system
insulates each small project from the others. As a rule of thumb, we
recommend keeping budgets below $10 million. If one fails, it won’t
affect the others. Smaller projects also operate below a threshold that
requires the layers of agency oversight that can delay and complicate
the budget approval process involved with large projects.

BUYING CUSTOM SOFTWARE DEVELOPMENT SERVICES 53

BUDGET FOR A “RISK MITIGATION PROTOTYPE”

Building a prototype for a small part of a larger system prior to
awarding a contract mitigates risk in several ways.

It exposes potential pitfalls and other issues that can only be
identified when actually working with software code. In our
experience, risk mitigation prototyping often reveals challenges in

the “path to production” that should be mediated before awarding a
contract to build custom software. For instance, it can prevent costly
post-award expenditures that can accrue when getting ready to begin
actual development.

It also results in code that can be tested by a system’s intended users
and used as an artifact in the solicitation process. In our experience,
potential bidders find this early risk mitigation work very valuable for
helping them decide if they’re a good fit for an agency’s needs and for
how to staff a team for such an effort.

In our work with agency partners, we can often complete some form
of risk mitigation prototyping with a team of three to four 18F staff

in a few sprints. We document what we’ve learned as part of the
solicitation document, so that an implementation team doesn’t have
to start from scratch in an unknown development environment.

(To fund this type of effort, federal agencies can apply to the
Technology Modernization Fund (TMF)).

https://tmf.cio.gov/

05

Working with
a vendor
development
team

WORKING WITH A VENDOR DEVELOPMENT TEAM 55

SUMMARY

The principles of agile oversight underlie every aspect of working
with a vendor team to build effective custom software, from setting
up and maintaining the relationship to leading product direction and
reviewing the quality of work.

Introduction to vendor management

Once an agency has awarded a contract to a vendor to build custom
software, its goal is to foster a healthy working relationship with the
development team and make sure it delivers working software that
meets the needs of its intended users. This work is typically called
“vendor management.”

As day-to-day management of a vendor’s work on a custom software
development project is the responsibility of the government product
owner, this section is written primarily for people in that role. Where
government technical leads and other staff should be involved, they
are mentioned specifically.

In government contracting, “vendor management” means the
activities and interactions with a vendor that occur after a contract
has been awarded. That work should result in the vendor fully
performing its duties under the contract and the organization
achieving its desired outcomes from the contract.

In the context of a performance-based services contract, vendor
management is not about enforcing the letter of contracts. It’s about
developing a productive relationship with the vendor, engaging closely
with them as they work to identify solutions, and regularly evaluating
the actual software they were hired to produce.

56 DE-RISKING GOVERNMENT TECHNOLOGY

The contract broadly defines the outcomes you want to achieve
together and sets the boundaries of how you and a vendor will work
together. It doesn’t dictate the exact nature of the day-to-day work of
building software.

Indeed, it is a sign that you and your vendor have a healthy
relationship if you rarely need to discuss the contract. If you’re
meeting multiple times a week and working closely together, your
conversations focus on the work itself: what the team is doing, how
they’re doing it, and obstacles, complexities, and solutions they’re
discovering. There’s no need to refer back to the contract.

Good collaboration and communication are the cornerstones of
effective vendor management of a custom software development
project. This is why the government product owner (whether or not a
technical expert) must actively participate in the project team and in
meetings where work is being done, and from the earliest stages of
planning.

This section outlines good practices for building a healthy relationship
with an outsourced development team through active collaboration
and communication. It starts by explaining the principles of agile
oversight, which underlie our guidance, and explains the practices in
relation to the following aspects of vendor management:

e Setting up the relationship

e Reviewing the vendor’s work

¢ Maintaining a healthy vendor relationship, including managing
conflict

WORKING WITH A VENDOR DEVELOPMENT TEAM 57

PRINCIPLES OF AGILE OVERSIGHT

The agile manifesto established a set of values for agile software
development. They are explained here for a government context.
If you followed the solicitation process for a performance-based
services contract as explained in this guide, you have set up your
relationship with your vendor to abide by these principles.

Individuals and interactions over processes and tools

You took the time to run a good procurement and select the best
vendor. Now, create an environment that gives the vendor team
space to do the work you hired them to do. Focus on building your
relationship with the vendor team and communicating expectations
for how you will regularly evaluate its work and not on how closely the
vendor complies with established agency procedures and culture.

Working software over comprehensive documentation

Use regular demonstrations of working software rather than

written reports to measure the progress of work. To evaluate the
quality of demos, you’ll use the quality indicators articulated in

the performance-based services contract. (Some documentation

is still required during the project to record details about how the
software was built, security and privacy protection mechanisms, and
instructions for its maintenance. Check out Reviewing the vendor’s
work for specifics.)

Customer collaboration over contract negotiation
As already noted, a sign of a good relationship with your vendor is
that you’re in constant communication. Setting up an environment

https://agilemanifesto.org/

58 DE-RISKING GOVERNMENT TECHNOLOGY

that enables professional, open dialogue between you and the vendor
team is imperative to successful collaboration.

Responding to change over following a plan

A development team can build working software only if they can
respond to needs as they evolve over time. The purpose of acquiring
the team’s services through a performance-based services contract
was to enable the team to be able to work in this fashion.

Leading product direction

A government custom software project is successful only if the
software delivers on the intent of the particular policy or service it was
designed for. That purpose must remain front and center at all times.

The product owner is responsible for ensuring that software achieves
its purpose and meets quality expectations. This work involves
leadership throughout the many aspects of the project, including:

e Setting the overall product vision and goals.
e Communicating constraints.

¢ Translating the goals into work.

¢ Navigating and recording major decisions.

¢ Releasing and evaluating the software.

SETTING PRODUCT VISION AND GOALS

The product vision is the guiding statement of what a software
project is trying to achieve. It should be clear and concrete about
what will change in the world by delivering the software.

WORKING WITH A VENDOR DEVELOPMENT TEAM 59

For example, the vision for a new system within a benefits program
might be: “Make it easier for state agency workers to detect potential
fraud and error, and take timely action to resolve discrepancies, while
preserving participants’ access to the full benefits they deserve.”

The vision for an internal purchasing platform might be: “Create a
world where the federal government can work out in the open with
nontraditional vendors to get quality solutions delivered quickly

and cost effectively for the public.” The vision can have more detail
than these examples, but it should be immediately understandable
and compelling for those involved in the product. (Consult the 18F
Product Guide for detailed guidance on creating a vision.)

The vision should be established in the solicitation phase and stated
in the contract. During the solicitation phase, the vision informs the
goals the government is trying to achieve with the vendor’s help.

After the contract is awarded, the vision helps the team maintain
focus during the project. It provides motivation and serves as a tool
for aligning the team toward around the same goal.

The vision helps the product owner and the vendor team set
objectives and prioritize work by providing overarching guidance

for what to pay attention to and how to weigh trade-offs. As

context for all work, it is important to spend time establishing a
shared understanding of the vision at the beginning of the project,
communicating it frequently, and realigning around it when necessary.

The team should check their progress against the vision no less than
quarterly and update its approach for delivering on it if needed.

There are a number of frameworks you can use to help you translate
the vision into goals. Nonprofit organizations frequently use the
framework of Impact, Outcomes, Outputs. Software development

https://guides.18f.gov/product/define/vision/

60 DE-RISKING GOVERNMENT TECHNOLOGY

teams more often use Objectives and Key Results; the North Star
framework; or Goals, Signals, and Measures.

Choose a structure that fits how your organization discusses work
and goals. Then tie the problems you’re trying to solve to the
outcomes the team is pursuing, for example, a 20 percent increase in
digital application submissions, a 30 percent decrease in call center
requests related to application submission errors, time to deploy a
new feature shifts from once a quarter to every two weeks, etc. The
most important thing is to have some way to explain how the day-
to-day product development tasks form building blocks toward the
vision.

COMMUNICATING CONSTRAINTS

It’s also important to identify, communicate, and manage constraints

that the development team may encounter while building the product.
For example, the programming languages the agency can support or
who can have access to production servers.

Even if a constraint is outside the control of the development team,
the government must be transparent about any obstacles the team
may face. Sharing this information allows the development team

to plan for them. It also allows the development team and the
government to brainstorm possible solutions and mitigations together.

TRANSLATING THE GOALS INTO WORK

It is not always easy to translate goals into work that delivers on those
goals. In most cases, there are many different ways to approach a
problem, and it is rarely clear how well an idea will work before it’s
realized and users can try it out. The product owner helps the team to

WORKING WITH A VENDOR DEVELOPMENT TEAM 61

navigate this uncertainty. The product owner works with the team to
prioritize work that is most likely to deliver the most progress towards
the goal soonest, based on user research.

The role of user research

Once a vendor team starts, it can be tempting to dive straight into
software development in order to show progress. A better place to
start is for the team to become familiar with and invested in the needs
of the system’s intended users.

Even if user research has been done before the vendor joins the
project, conducting a round of user research when the vendor starts
is helpful. There are always questions about user behavior to address.
It also establishes frequent research as a norm that always informs
the next set of product decisions.

It may feel risky or inefficient to involve the whole team in user
research, especially a new vendor team. But it helps the whole team
gain critical context, understanding, and empathy. People will learn
the most from direct user contact, which provides nuances and
details that may not be apparent from a summary. Participating in
user research helps teams make better decisions about the software
and results in less rework later.

62 DE-RISKING GOVERNMENT TECHNOLOGY

Understanding the software development cycle

Prioritize Reflect

o o

Prioritize Government decides what work the vendor should focus on in a
sprint based on discussion with the vendor team, user research,
and stakeholder input.

Plan Vendor and the government lead divvy up and assign tasks and
agree on a “definition of done.”

Build Vendor team does the work and uses automated and other
quality assurance tools to ensure code quality at deployment.

Ship Vendor team delivers the work to the government, including
all code and other artifacts. Government leads review for
adherence to the quality indicators and definition of done.

Reflect Government and vendor team review the work done in the
previous sprint, discuss what worked, and what will need to be
tweaked in the next sprint.

One of the most important roles the government product owner plays
in a software development project is working with the team in each
sprint to decide what to do next and to evaluate what’s been done.
This involves frequent interaction via well-structured meetings which

WORKING WITH A VENDOR DEVELOPMENT TEAM 63

is one reason many teams begin work with an existing set of roles
and meetings like Scrum.

To decide what to do next, product owners work with a team to define
small pieces of work that it can work on independently. The “small
pieces” are commonly written as “user stories,” which capture what

a user is trying to do and why. The process of fleshing out stories

is critical to aligning the product owner and team on the work to be
done and clarifying its connection to goals.

User stories should be accompanied by a “definition of done,” the
criteria for when work on a backlog item can be considered “done.”
This enables a vendor team to work independently and meet the
product owner’s expectations for completeness.

At the start of a sprint, the product owner and vendor team agree on
the next stories to work on. Then, at the end of the cycle, the team
should demonstrate completed work, even if it won’t be directly
experienced by the user.

Having the vendor team demonstrate the product regularly is an
indispensable part of healthy oversight and good product leadership.
Along with the quality indicators discussed below, “demos” are the
only way the government can be truly confident the vendor’s work is
on track. They also help to avoid late surprises.

Based on the demo, the product owner can then agree if it meets

the definition of done or if more work and further clarification of the
work is needed. If the work doesn’t meet the criteria to be considered
done, it’s not a moment for blame, but for discussion and improving
how you communicate and collaborate with the vendor team. After all,
it’s impossible to anticipate all aspects of the work ahead of time. Ask
questions like: “Was something missing from the definition of done?”
“Is the team lacking essential context?”

64 DE-RISKING GOVERNMENT TECHNOLOGY

MAJOR DECISIONS

Some decisions have risks or impacts beyond what a vendor is pre-
authorized to decide. These decisions can include issues like whether
to use a new third-party component, what data the system should
store, or how a new capability should integrate with existing systems.

The government product owner or technical lead will likely be able to
decide some of these on their own. But you will often need to work
with the vendor about issues that involve established processes and
other government stakeholders. It is the government’s responsibility
to consult with stakeholders and ensure that the implications of
decisions are surfaced.

Whether the product owner or another agency representative

makes a decision, it’s good practice to document major decisions

in an Architecture Decision Record (ADR), sometimes just called a
“decision record.” This tool helps maintain the system, as well as
communicate the decision and any associated risks to stakeholders.

Major decisions come up frequently at early stages of projects and
then in waves, such as during release planning. They should be
expected. If a vendor team isn’t flagging major decision areas, the
product owner should bring it up in a meeting with the team and the
contract administrator.

RELEASING THE SOFTWARE

When the software is ready for use, it’s a good risk management
practice to release it to a small group of users first before rolling it out
to more people.

WORKING WITH A VENDOR DEVELOPMENT TEAM 65

It’'s important to discuss a rollout strategy for release early in
development. Deciding who will use the product first will inform
choices about what to build first and in which order to deliver
capabilities, such as a whole payment flow or household registration
process. The rollout strategy may also impact decisions about how
the system captures and stores data.

As you get closer to release, you may need to flesh out
responsibilities for compliance, release, and operations between the
vendor team and agency. Oftentimes, the vendor team will need to
interact with agency teams at this point, like operations or a help
desk. You may need to get involved in these discussions to ensure
that all of the teams are getting the information they need for a
successful launch.

Before release, many agencies require hands-on or “user
acceptance testing,” where intended users test the product’s
features and functionality. But, hands-on testing doesn’t need

to wait until all of the software is complete. It’s better to test a set
of capabilities of the software or process before the team moves
on. The earlier functionality is tested, the simpler it is to localize
and fix issues.

It is common for the product owner to help coordinate testing and
work with the team to ensure that the tests adequately exercise
the system. It is also likely you will test the system yourself. These
tasks help de-risk the project and help you and other government
stakeholders gain confidence in the software before it’s released.

EVALUATING THE SOFTWARE

After release, a product owner’s work isn’t over. Systems don’t always
perform as they should. They may even cause unexpected problems

https://18f.gsa.gov/2021/07/06/architecture_decision_records_helpful_now_invaluable_later/

66 DE-RISKING GOVERNMENT TECHNOLOGY

in the processes they’re part of. A key part of the product owner’s
role is to evaluate if the system delivers on the project goals over
time. Information collected after release is also essential for making
ongoing development plans.

As with a rollout strategy, it’s important to have an evaluation plan

in place before release to ensure the information needed to evaluate
the product against the goals is being collected. The vendor may be
able to help with evaluating how the software is performing, but the
government is ultimately responsible for doing that work.

Setting up the vendor relationship

Along with a strong understanding of product leadership, setting

up the government-vendor relationship is key to effective vendor
management. This begins in the project kick-off meeting and involves
being ready to onboard the vendor team and establish healthy
patterns for working together.

PROJECT KICK-OFF MEETING

Once the contract is awarded, the first interaction between the
government and the vendor takes place at the post-award orientation
meeting — the project kick-off meeting.

This is the first opportunity for the product owner and vendor team

to talk about the product vision and desired outcomes for the project
together. This is also the time to establish how the development team
will operate as a unit by sharing expectations about communicating
and working with each other, including discussing how particular
issues and challenges will be resolved by the development team,
government, or both.

WORKING WITH A VENDOR DEVELOPMENT TEAM 67

Kick-off will involve a lot of new information for the vendor team. It’s
important to be thoughtful in designing this orientation so the team
members have time to process and ask questions.

Consider spreading out orientation topics over a week rather than
scheduling the typical half-day or full-day post-award orientation
meeting. A multi-day format will allow more robust discussion of each
topic area and allow time during and in between meetings to reflect,
synthesize, craft follow-up questions, and strategize next steps.
Each day should have no more than four sessions. Keep each one
to 60 minutes or less to maximize information retention. (Review a
sample kick-off week agenda.) Make sure to capture key orientation
information in a written format, such as a README or guide, that
the vendor can reference later. (Documentation will also help when
onboarding new staff to the project.)

The project kick-off week should set the expectation for collaboration,
so invite the vendor to lead a session of their choosing. They

may want the opportunity to lead a team-building session or an

open working session where they can ask questions about what
they’ve learned.

It is important to limit attendance to the project kick-off week to only
individuals that will participate in the day-to-day work. The week
should serve as team-building for the newly formed team. Looky-loos
or curious parties should not attend. However, it’s a good idea to
invite the project’s executive stakeholder to the first meeting to stress
its significance.

The week after kick-off, the product owner should schedule one-on-
one meetings with each member of the vendor team. We encourage
all team members to meet in this fashion, especially the product
support and technical support on both sides so they can set up
recurring meetings and establish open lines of communication early.

68 DE-RISKING GOVERNMENT TECHNOLOGY

ONBOARDING

Onboarding a new vendor team involves getting them the access
they need to systems, buildings, and government-furnished
equipment. An agency typically has processes in place for a common
level of access, but a custom software development project will

often require a more specialized level of access. The process of
getting it can be an arduous journey of paperwork, permissions, and
authorizations and take a few weeks to a few months. During that
time, the vendor can still bill the government for hours worked.

You can make the onboarding more efficient if you clear the “path to
production” during solicitation so software development systems and
deployment environments are in place by the time the contract starts.
If that work has been done, onboarding is a matter of getting the
team access to these environments as early as possible. If not, then
that prep work needs to be done and comes with the additional issue
of often enmeshing the vendor team in messy discussions about its
need for access.

PATTERNS FOR WORKING TOGETHER

By the end of kick-off week, the government and the vendor team
should know how they intend to work together, including:

e How often they will meet

e What will be covered at meetings

e Who will participate in each type of meeting

e Who will lead each type of meeting

As noted earlier, the government should convey the product vision

during kick-off and check in about understanding of and alignment on
vision and goals quarterly.

WORKING WITH A VENDOR DEVELOPMENT TEAM 69

In a best-case scenario, you and the vendor team do planning

and review activities together. Whether you use a Scrum-based
approach or not, you’ll need enough collaboration time to commit to
and complete specific pieces of work in a one- or two-week cycle.
You can expect to spend at least three hours per cycle on regular
activities, including planning and review meetings in which the team:

e Frames work and discusses desired outcomes
e Agrees on work to be done next
¢ Reviews completed work together

e Interprets new information and feedback, and decides what to do
about them

Reflects on how to work better together as a joint team

Regular check-ins with the contract administrator

The product owner should set up regular meetings with the vendor’s
contract administrator (or whoever is the step above the vendor team
lead) in case a situation requires escalation. These regular check-ins
should be at least once a month and last no more than 30 minutes.

The point of a check-in is to establish a frequent and open channel
of communication with contractor leadership to discuss the project’s
progress, successes, and challenges. The contracting officer or
equivalent isn’t required to attend, but it’s a good practice to invite
them for their awareness.

70 DE-RISKING GOVERNMENT TECHNOLOGY

ESTABLISHING INTERNAL AGENCY
COMMUNICATION AND COLLABORATION

The start of a contract is a good time for the government to set

up ways to track progress, deliverables, invoices, spend rate, and
project risks. Even though the designated contract administrator

is contractually responsible for approving invoices and accepting
vendor deliverables, the product owner and government technical
lead are also critical because they will work with the vendor team on
a daily basis and will have firsthand knowledge of the team’s roles,
responsibilities, and performance.

The contract administrator, product owner, and tech lead should be
in frequent contact about the vendor’s performance. Documenting
the status of the contract and vendor performance in one shared
document will also help make sure that all government roles are

in the loop. Common data points that should be tracked during
performance include:

¢ |Invoice numbers and dollar amounts (to monitor spending levels)

e Deliverables and their respective quality indicators

¢ Any relevant materials or artifacts that the government and vendor
team agrees are meaningful and valuable for tracking performance

Reporting the development team’s progress to agency leadership
is the responsibility of the product owner or contract administrator.
Information that shows the vendor’s actual progress, like software
demos or communications that articulate the status of work
toward outcomes or perceived risks, should be shared to minimize
misunderstandings or miscommunication, and surface issues that
may need to be addressed by all of those involved.

WORKING WITH A VENDOR DEVELOPMENT TEAM 71

Reviewing the vendor’s work

Good vendor management rests on the government’s power and
capacity to accept the vendor’s work or ask for rework. This is
much more than just quality assurance. Reviewing the vendor’s
work effectively requires understanding the software’s intent and
acceptable trade-offs. It also requires focusing on the software and
not relying on reports about the project’s progress.

A significant part of the review is checking that the software’s
functionality meets user needs. Review should also check the
work against the project’s “quality indicators,” which enable the
government to assess if a vendor development team’s work meets
the expectations for quality laid out in the contract.

QUALITY INDICATORS

In software development, “quality” is sometimes assessed narrowly
as a lack of defects or bugs. A more productive way to approach
assessing quality is to set clear, positive expectations upfront and
monitor them continuously throughout a project. Doing so will enable
you to build a high-quality product and maintain a healthy vendor
relationship.

As explained earlier, quality expectations and indicators for
your project should be incorporated into the solicitation and
open to questions from vendors before they submit a proposal.
Communicating these from the get-go lowers the risk of friction
between you and the chosen vendor.

It is reasonable and consistent with private-sector tech practices to
ask to see proof from your vendor that they are meeting expectations

72 DE-RISKING GOVERNMENT TECHNOLOGY

for quality, so don’t be shy about reviewing quality indicators. Think
of them as the vital signs to be checked regularly during a project that
help make sure the vendor is building high-quality and maintainable
software.

In general, good quality indicators:

¢ Create a space for conversations between government and vendor
to keep work on track

e Focus on necessary, user-centered work products

¢ Are grounded in common professional standards

¢ Rely on facts, not opinions

¢ Don’t create additional work for you or the vendor

e Give the vendor freedom to meet the criteria in a variety of ways

e The vendor should be able to demonstrate they are meeting such
quality indicators without additional work. Automation tools collect
most of the necessary data by default.

How to monitor quality indicators

When

After the contract is awarded, the project’s quality indicators should
be reviewed at every sprint, usually every two weeks, as part of
acceptance of vendor work.

Who

To avoid a conflict of interest, a government employee with sufficient
technical knowledge should conduct the review. This may either be
the agency product owner or a government technical lead assigned to
the project, depending on the requirement.

WORKING WITH A VENDOR DEVELOPMENT TEAM 73

Method
Indicators are evaluated using two methods: manual review and
automated testing.

In a manual review, the government reviewer looks at the deliverable
and judges whether it meets the standard set by the expectation
stated in the contract. For example, the indicator “documented code”
is not satisfied by the existence of documentation. The reviewer must
judge if the documentation adequately explains the code.

Automated testing is done using tools that run tests every time code
is submitted, or by some other trigger in the software development
workflow. The vendor should set up the tests and provide the
evaluator with the results from the testing tools.

After an initial evaluation of all of the quality indicators, the reviewer
should talk to the vendor about the results, good or bad. This
dialogue should align the reviewer’s and the vendor’s expectations
and address early signs of problems or other concerns. Repeated
failures to meet quality expectations should be documented and
escalated to the appropriate contracting officials.

18F QUALITY INDICATORS

18F teams use the following quality indicators in our projects with
agency partners. We recommend these as a minimum set that
should be stated in a solicitation and contract for custom software

development. They are presented and explained below in the form
by which they’re known at the federal level: Quality Assurance
Surveillance Plan (QASP).

https://www.acquisition.gov/far/37.604
https://www.acquisition.gov/far/37.604

74 DE-RISKING GOVERNMENT TECHNOLOGY

Each indicator is accompanied by a method or methods that make it
easy to review and document. Expect a software vendor experienced
in modern software development practices to be able to easily
demonstrate they are meeting them at every sprint review.

Modify our set of indicators to meet the standards and requirements
of your agency and project as needed. If, for example, your agency
has more thorough requirements for testing accessibility, those are
the performance standards you should use.

When writing a quality indicator, make sure it:

e States a performance standard(s) that is short and clear
¢ |s measurable on an ongoing basis

e |s work that lies within a vendor team’s scope and capacity to
control

¢ |s not a specific program outcome, such as reduction in processing
times, payment accuracy, etc. (The government can’t pass
responsibility for program outcomes to a software vendor. A vendor
can follow the program’s assessment of how to generate outcomes,
but the program is responsible for the ultimate results.)

Tested code

Performance standards Acceptable quality level Method of assessment

Code delivered under Minimum of 90% test Automated testing
the order must have coverage of all code

substantial test code

coverage and a clean code

base

Testing is an essential practice for developing functional software that
performs well.

WORKING WITH A VENDOR DEVELOPMENT TEAM 75

Developers write automated tests alongside their code that find flaws
and/or verify that features function the way they were designed to. As
code develops, tests are added so that future changes and additions
run through the entire “suite” of tests. This practice ensures that
revised and new code don’t break features and functionality.

To meet this quality standard, a software developer must:
e Use automated testing tools
e Write automated tests for the code they develop

e Address the issues that surface in testing immediately

A developer can easily demonstrate that they’re following these
practices by producing summaries of the automated tests that show
the code base passes all of the project’s tests.

An important high-level indicator of quality in those reports is code
coverage, or what percentage of the code base in the project is
executed or touched by the automated tests. Code that isn’t covered
by any tests is a source of potential errors and a liability for future
development. Expect a high threshold for coverage: 18F’s standard

is 90 percent. The 10 percent allows a buffer for how much code can
be uncovered since full coverage is not always practical. For instance,
the developers may have determined that a certain function should be
tested manually.

Automated testing of code isn’t perfect. New errors can get through
even with code coverage and testing. When an error gets through
automated testing, a developer must fix it and write an automated
test for that particular error so that it is caught in the future.

If a developer can demonstrate they are regularly using automated
testing that provides 90 percent or more code coverage and fixes

76 DE-RISKING GOVERNMENT TECHNOLOGY

errors quickly, they have tools and practices in place for satisfying the
quality indicator of tested code.

Properly styled code

Performance standards Acceptable quality level Method of assessment

Meeting acceptable quality | 0 linting errors and 0 Styling standards and
level for this indicator warnings linters

Code style refers to established standards for writing and formatting
a programming language. This practice maintains the readability and
consistency of code so that it’s easy to review and future developers
can understand and maintain it.

Every programming language has its own code styling standards,
much like there are various style guides for writing. To help them
adhere to a code style, developers use code “linters,” which test code
against a style’s rules and show code that needs to be changed to
meet the chosen styling standard.

From a quality perspective, it is important that the vendor uses the
chosen code style consistently and that styling errors or warnings
caught by the code linter are corrected before the code is delivered
and integrated into the product.

As with automated testing, a developer who is following these
standards and using linters can easily and regularly produce output
from the tool that shows there are currently no styling errors or
warnings.

Review 18F’s recommendation for linters for JavaScript and CSS.

WORKING WITH A VENDOR DEVELOPMENT TEAM 77

Accessibility

Performance standards Acceptable quality level Method of assessment

Web Content Accessibility | O errors reported using an | Automated and manual

Guidelines 2.2 — ‘AA’ automated scanner, and 0 | testing
standards errors reported in manual
testing

Note: Section 508 obligates federal agencies to make all their public-facing websites
and digital services accessible. Many states have their own accessibility standards.

To meet full compliance with accessibility standards requires using
automated and manual testing.

Developers of public-facing websites can check that their projects
meet common accessibility standards by using an open source
accessibility testing tool, like Pal1y. Accessibility testing tools run a
series of automated tests on a site that detect accessibility issues.

Expect accessibility tests to be included in the suite of automated
testing tools set up during a project and that you’ll review their results
every sprint. Integrating regular automated accessibility testing during
development will keep the project on a path towards meeting this
quality expectation.

Manual testing requires more effort than automated, which makes it
impractical to do every sprint. An initial manual test should be done
when the project’s main functions and interactions can be tested. This
initial review will set the base line for the project and often reveals a
number of accessibility issues that need to be addressed.

To resolve the issues, prioritize them into categories of critical,
moderate, and low priority:

e Critical issues pose serious accessibility challenges that will
exclude users and should be addressed immediately.

https://guides.18f.gov/engineering/languages-runtimes/javascript/#style
https://guides.18f.gov/engineering/languages-runtimes/css/#linting
https://www.w3.org/TR/WCAG22/
https://www.w3.org/TR/WCAG22/
https://www.w3.org/TR/WCAG22/
https://www.section508.gov/
https://www.section508.gov/manage/laws-and-policies/state/
https://www.section508.gov/manage/laws-and-policies/state/
https://pa11y.org/

78 DE-RISKING GOVERNMENT TECHNOLOGY

e Moderate issues should be resolved within the next sprint.

e Low priority issues can be added to the project backlog and
scheduled with other project tasks.

The development team should conduct a manual review for each
major release to the project. These reviews should build on the base
line and only test the portions of the project that have changed. The
team should also document the review and remediation process

for each accessibility issue in each phase of testing so there is an
ongoing record.

Refer to the 18F Accessibility Guide for a comprehensive checklist
and descriptions of accessibility issues and how to test for them.

Deployed
Performance standards Acceptable quality level Method of assessment
Code must successfully Successful build with a Live demonstration
build and deploy into a single command

staging environment

Modern development processes approach deployment of code
through continuous integration and continuous deployment (Cl/
CD). These tools create a development “pipeline” that automatically
builds and deploys the project so it can be tested and then deployed
to a production server that runs the public-facing site.

Automated CI/CD tools, which are integrated into version control
systems like GitHub, make this practice possible. These tools and
practices make it easier to maintain software and quickly make
changes in response to user needs.

A development team can demonstrate it has set up the pipeline
using CI/CD practices and tools if it is able to deploy a change to the

WORKING WITH A VENDOR DEVELOPMENT TEAM 79

testing (also called “staging”) or public-facing production environment
at any time with just a single command. The deployment process
should be comprehensively documented in plain language so it is
understandable to non-technical agency staff.

Documentation

Performance standards Acceptable quality level Method of assessment

¢ All dependencies are Vendor provides Manual review
listed and the licenses documentation as
are documented specified in this section

e Major functionality in the
software/source code
is documented in plain
language

e Individual methods are
documented in-line using
comments that permit
the use of documentation
generation tools such as
JSDoc

* A system diagram is
provided

As the owner of the software created by the vendor, you need
accurate and current documentation of the software so future
developers can understand how it was built and why various
decisions were made.

There are two types of documentation:

¢ In-line documentation is written into the code as comments that
describe what specific pieces of code do.

e Supplementary documentation is written explanation of how the
system works, its major functions, and any open source software
“dependencies” required to run it.

https://guides.18f.gov/accessibility/checklist/
https://jsdoc.app/

80 DE-RISKING GOVERNMENT TECHNOLOGY

e For maintenance, it’s also important to document:
¢ Tools used during the project

e Software licenses for the tools

e How to get access to the tools

* Where log-ins are stored

This documentation is especially crucial if the system will be
transitioned from the vendor to the agency.

The expectation for this quality indicator is that new code and
documentation of it are written at the same time. It is most efficient to
document new code as it is written and more likely to be accurate.

Security
Performance standards Acceptable quality level Method of assessment
Open Web Application Code submitted must be Evidence of automated
Security Project (OWASP) | free of medium- and high- | testing per OWASP
Application Security level static and dynamic

Verification Standard 4.0.3 | security vulnerabilities

Make security testing a regular part of the sprint review process.
Addressing vulnerabilities when they arise will reduce the risk that
the project launches with significant security flaws. These practices
should make it easy for a vendor to meet the hosting agency’s
security and compliance standards.

To check that applications are free from known security vulnerabilities,
developers use open source, community-developed security
standards like OWASP, and scanning tools that perform automated
testing of applications against those standards.

WORKING WITH A VENDOR DEVELOPMENT TEAM 81

Security scanning involves static and dynamic analysis. Static
scanning refers to scanning the source code for vulnerabilities.
Dynamic scanning refers to security tests of the application that
determine if it is protected against common security vulnerabilities.

As with other automated tests, the vendor should be able to
demonstrate the code in its current state doesn’t have any
vulnerabilities that are classified by OWASP as either medium- or
high-level static or dynamic vulnerabilities.

Learn more about good practices for security in government.

User research

Performance standards Acceptable quality level Method of assessment

Usability testing and other Artifacts from usability Demonstrated evidence
user research methods testing and/or other of user research best
must be conducted at research methods with practices

regular intervals throughout | end users are available at

the development process the end of every applicable

(not just at the beginning sprint, in accordance with

or end) the vendor’s research plan

Designing human-centered software involves many decisions. A
development team’s decisions are better when they’re informed

by the perspectives of a system’s intended users. This is why it’s
critical to know a team is conducting and making decisions based on
evidence gained from user research throughout the entire project.

User research explores possibilities, tests assumptions, and reduces
risk in a project by engaging frequently with end users. It includes
qualitative and quantitative methods, including user interviews,
usability testing, journey mapping and card sorting. It also involves

https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-application-security-verification-standard/
https://guides.18f.gov/engineering/security/
https://methods.18f.gov/discover/stakeholder-and-user-interviews/
https://methods.18f.gov/validate/usability-testing/
https://methods.18f.gov/decide/journey-mapping/
https://methods.18f.gov/validate/card-sorting/

82 DE-RISKING GOVERNMENT TECHNOLOGY

investigating tools and systems, and interacting with members of
the pubilic.

The research approach and methods used on a particular project will
vary depending on the problem it’s trying to solve, timeline, phase of
the project, goals, and constraints.

When reviewing user research materials, processes, or deliverables,
these are good signs that reflect the use of best practices:

¢ Recruiting from a diverse population

o The team should be recruiting participants with a diverse range
of perspectives, needs, and abilities. This helps ensure a product
or service will be accessible to anyone who may use it. It’s also
important the team consider barriers to use and inclusion faced
by various groups who may use the software and recruit people
from those groups.

e Research plan(s) with clear and appropriate goals

o Planning ensures that participants’ and the team’s time is
respected throughout the research process. It also helps the
team adapt its approach in response to real-world conditions. A
research plan should include clearly stated and appropriate goals,
methods, and research questions.

e The whole team is part of the research process

o It’s a good sign to see active team participation in research
planning, observing research sessions, debriefing, and discussing
the findings because it indicates shared investment in learning
and serving the needs of users. (Every member of a team need
not participate in every aspect of research.)

e Research participants’ privacy is protected

o When participants trust you, they are more likely to share full
and accurate accounts of their experiences. A large part of

WORKING WITH A VENDOR DEVELOPMENT TEAM 83

maintaining trust with participants involves protecting their
privacy. Signs that the vendor is protecting Pl (personally
identifiable information) include the use of pseudonyms, keeping
access to raw notes limited, collecting informed consent, and de-
identifying research data before synthesizing.

e Actionable research findings

o After each round of research, the whole team should identify how
the research findings change the work planned for the next sprint
or for future design efforts. Articulating insights from findings
involves various activities that allow the project team to work
together to begin to map out larger patterns and themes.

Learn more about user research in the 18F User Experience Guide.

A note on code review

Code review refers to the common practice of developers regularly
reviewing each other’s code on a project. It is critical to maintaining
consistency and quality on a project with many contributors. It allows
reviewers to suggest improvements to the code and helps keep
everyone on the team aware of what others are doing and how it may
affect their own work.

Code review facilitates the manual review method of assessment
required for the code-related indicators explained above. It also helps
produce higher quality code with fewer defects.

While our sample QASP (included in the Resources section) doesn’t
include a specific quality indicator for code review, expect a vendor
team to be engaging in this practice as part of its efforts to meet
quality expectations.

You can ensure a vendor team engages in internal code reviews by
asking a vendor how its developers approach them as part of the

https://guides.18f.gov/ux-guide/research/

84 DE-RISKING GOVERNMENT TECHNOLOGY

proposal evaluation process. It may be done in a formal meeting. It
may be done through version control systems like GitHub, in which
developers review and approve new code and changes to existing
code through “pull requests” before they are integrated or “merged”
into the project’s code.

The scope of a code review can range from addressing small issues
to large ones. The only rule is that all new code or changes to existing
code is being reviewed by at least one person before being merged.

It can be a challenge to establish a healthy balance of government
involvement in a vendor team’s code reviews. The “right” amount
supports the flow of work and doesn’t delay or block it. No
involvement increases the risk that the project won’t meet end user
needs or critical design flaws won’t be discovered until it is difficult
to fix them. Too much can undermine the vendor’s autonomy and
motivation to produce quality code independently. For instance, if a
government reviewer strictly dictates how something should be done
and is not open to dialogue, it can lead to frustration and breakdown
in communication. The level of government involvement also depends
on the availability of staff with relevant technical expertise. (Consider
hiring an independent contractor to act as reviewer if needed.)

Open and regular communication is the key to finding a healthy level.
When government experts, or independent contractors working on
behalf of the government, are able to participate in the code review
process, discuss expectations about their level of involvement

with the vendor at the start of work. Then, at every sprint review,
proactively solicit the team’s feedback about how that participation is
going. Acknowledge and resolve issues before they harm the working
relationship.

When technical expertise is not available on the government side to
participate in code reviews, ask the vendor to confirm 1) that they are

WORKING WITH A VENDOR DEVELOPMENT TEAM 85

conducting code reviews, and 2) to demonstrate, in the form of pull
request discussions and approvals, that reviews are happening.

Learn about 18F Engineering’s approach to code review.

Review an example of how to document the code review process in a
government technology project.

Maintaining a healthy vendor
relationship

There are common warning signs that your relationship with a
vendor is becoming dysfunctional. These include when you and
the vendor are:

e Paying more attention to processes and tools instead of individuals
and interactions.

¢ Valuing comprehensive documentation over working software.

e Spending more time negotiating what the contract means instead of
collaborating to deliver value.

e Fixating on initial plans instead of accepting change as an inevitable
part of the work.

If any of these occur, don’t immediately blame the vendor. These
often appear when a vendor team is pressured by the agency to
demonstrate they are following the rules of the contract. You can still
get the relationship back on track.

https://guides.18f.gov/engineering/our-approach/code-review/
https://github.com/akhealth/EIS-Modernization/blob/master/code-review.md

86 DE-RISKING GOVERNMENT TECHNOLOGY

HOW TO MANAGE AND RESOLVE CONFLICT

A “healthy” relationship with a vendor on a software development
project will still involve conflict. When conflict does arise, it’s
important to make it productive instead of destructive.

You can do that by always staying close to the work and maintaining
good communication channels, which will help you detect issues
early and address them before they become major problems.

Many conflicts with vendors are about performance and ultimately
become conflicts over contracts. Contracts are legal documents that
protect you and the vendor. To some extent they are also an attempt
to predict the types of conflicts that could arise and to resolve them
preemptively, or at least to provide an outline for resolution. As such,
they are, essentially, relationship agreements. Contracts establish a
framework for how the parties will work together. Unfortunately, they
are terrible tools for managing software projects. Contract language
is typically dense and hard to understand, intended to be difficult

to modify rather than accommodating to changing needs, and is
designed to meet the needs of someone in a legal or procurement
role, not a software project team member. Consistent with the

FAR’s guidance for disputes and appeals that govern all federal
contracts, we recommend resolving issues without resorting to

contractual claims.

We’ve found that if the government and vendor team are using the
methods for communicating and demonstrating continuous progress
that are outlined in this guide, contract claims almost never occur.

The product owner has the most responsibility for resolving conflict
since they’re also responsible for maintaining the project’s speed.
Some vendors also have an “agile coach,” or someone in a similar
mediating role, on the team to help to unblock issues or deal with

WORKING WITH A VENDOR DEVELOPMENT TEAM 87

conflict. The goal for government and vendor is to discuss issues as
they arise directly and professionally and resolve them before formal
dispute resolution is needed.

Here are some common issues we’ve seen arise in government-
vendor relationships and how they’ve been addressed without
resorting to contract claims.

Problems meeting the quality expectations

Monitoring guality indicators on a continuous basis is the most
effective way to get ahead of issues. If the vendor misses one or more
indicators, the way to resolve the issue is by discussing it with the
vendor and documenting the conversations.

For example, if a vendor isn’t meeting code coverage expectations in
early sprints, the technical reviewer should ask the vendor team in the
next sprint review meeting what’s causing it to miss the acceptable
quality level and discuss remedies together. Documenting the reasons
for the problem and the actions the vendor will take in future sprints
to correct it should be captured in one place, such as the code
repository, for later reference.

Staffing misalignment

Avoiding staff misalignment on the vendor team begins during
proposal evaluation, when the government should assess the
reasonableness and rationale of vendors’ proposed staffing approach,
including the team’s size and composition of roles.

Still, if the vendor team is using an iterative approach, the make-up
of the team may need to change. For example, after a few sprints,
the vendor team might realize there’s a gap in the skills needed to

https://www.acquisition.gov/far/subpart-33.2#:~:text=33.204%20Policy.&text=Reasonable%20efforts%20should%20be%20made,572(b)%20).

88 DE-RISKING GOVERNMENT TECHNOLOGY

maintain or increase its speed of work. Or user research might reveal
a new priority for the project that requires new skills on the team.

Allowing for an adjustment in staffing is one reason we recommend
using a time-and-materials (T&M) type contract with a maximum
ceiling price for a custom software project. The T&M contract type
enables the team composition and/or hours to be adjusted as long
as the government and vendor agree it’s necessary, and there isn’t
a major impact on the estimated ceiling price for the period of
performance.

Staying close to the work enables the government to be able to
interpret the reasonableness of proposed staffing changes. It also
helps spot potential issues with staffing that should be addressed
with the vendor, such as frequent turnover, which might be a sign of
friction within the project team.

Turnover of key personnel

In a federal contract, the intention of a key personnel clause is to
ensure a vendor staffs a team that has the necessary expertise and
experience for a project.

If the vendor proposes a change to key personnel after the contract
is awarded, the government should discuss the matter with an open
mind. A change in leadership on the project might disrupt the flow
of the vendor team’s work, so it’s important that the government
and vendor discuss the impact of the change and work together to
mitigate it.

Before agreeing to the change, the government should review the
résumé(s) for the proposed replacement(s) or meet with them.
However, the government can’t participate in the vendor’s hiring
processes for a replacement, such as reviewing applications or sitting

WORKING WITH A VENDOR DEVELOPMENT TEAM 89

in on interviews. Most agencies are restricted from “acting as an
employer” to anyone on the vendor team because they lack “personal
service” contract authority (refer to FAR 37.104).

Doing work outside priority order

Sometimes a team might work on issues in the backlog that are not in
the order of priority set by the product owner. Whenever this occurs,
the product owner should find out why.

There are many possible reasons. The team may not have understood
the priorities. It may have disagreed with them. Or, it may have had a
logical reason. For instance, the team may have discovered an issue
that wasn’t captured in the backlog but needed to be addressed
before a prioritized issue.

If you find that the team didn’t understand the priorities, discuss
how your processes and communication can be improved. Clarifying
and aligning on how priorities are communicated may be enough to
address the issue.

If the vendor doesn’t understand the priorities, you may need to share
more context about the project or program-specific topics.

If the team doesn’t agree with the priorities, it may be because they
have important information you’re not aware of that affects the
functionality or integrity of the software.

If the vendor team understands the priorities but isn’t attending

to them, it may be a sign of a staffing issue that the vendor needs

to address. For example, if the team repeatedly de-prioritizes an
important task, it might indicate weak skills in a particular area or
need for a separate workstream. As the product owner, your role is to

https://www.acquisition.gov/far/37.104

90 DE-RISKING GOVERNMENT TECHNOLOGY

highlight the impact of the issue on the work and create space and
motivation for the vendor to resolve it.

If the team is choosing to take on more tasks in a sprint than those
selected as priorities, it’s not a cause for concern as long as the top-
priority tasks are being completed at a satisfactory rate. But, if lower
priority work is drawing focus away from higher priority tasks, the
product owner should address it with the team.

Making decisions outside the team’s authority

Good vendor teams sometimes make decisions beyond their
authority. Because every agency operates differently, it can be difficult
for a new team to know which decisions they are free to make, which
decisions need to be communicated along with implications, and
which decisions are truly for the agency to decide. The important
thing is to spot when this happens and clarify the boundaries of team
decision-making.

Common areas where this issue comes up are:

¢ Tech re-platforming (such as introducing a new programming
framework or data store)

¢ Reopening settled questions, especially wanting to redo user
research

¢ Decisions that constrain launch strategy or operations

While it is the vendor team’s responsibility to signal when its choices
may have a wider impact, the product owner should strive to create
an environment that encourages that communication by asking good
questions and remaining engaged throughout the project. Although
a product owner should be mindful of leaving decisions to the team
that are in its purview, it’s their responsibility to actively manage the

WORKING WITH A VENDOR DEVELOPMENT TEAM 91

consequences of the vendor team’s choices for people outside the
team and to consider their long-term impacts.

Like with other challenges, the first thing a product owner should

do if a team is making decisions outside its authority is to talk with
the team. Escalation should only be a last resort. The product owner
should work to clarify the types of decisions to be made and how
they want to be involved in each. Decisions on these matters should
be written into the document that captures the team’s operating
principles, such as a team charter.

A government custom
software project is
successful only if the
software delivers on the
intent of the particular

policy or service it was
designed for. That purpose
must remain front and
center at all times.

06

Conclusion

93

SUMMARY

Following the principles and practices in this guide will help
agencies lower the risk that their technology projects will fail. It's not
easy work, so it’s important to start small and just try. And then to
keep trying.

Today, complex technology systems deliver vital government
functions that support people’s quality of life. As the launch of
HealthCare.gov and numerous other examples show, that function

is easily stymied when agencies make ill-informed choices and use
ineffective methods to acquire and develop software.

But, agencies can, and sometimes do, avoid those errors and deliver
technology systems that serve their intended purpose. They do so by
following the principles and practices collected in this guide.

These aren’t new ideas. They are widespread in the private
technology sector. They’re not new to government either. Iterative
development was used over half a century ago to deliver ambitious

projects like the X-15 hypersonic jet, while many technical experts

in government, like those on the Defense Innovation Board, know:
“modern methods allow a project to continuously improve, adapt to
evolving threats, and take advantage of rapid technology advances.”
Yet “modern methods” still aren’t the norm in government.

Why? Because we are getting in our own way. In its interim report
to Congress, a panel of 16 recognized experts in acquisition and

procurement policy wrote of the Department of Defense: “Processes
such as developing requirements, contracting, making investments,
or obligating money are often driven not by a sound business case,
but by arbitrary deadlines and outside pressures.” It went on: “Both
written rules and performance norms incentivize making decisions

https://media.defense.gov/2019/Mar/26/2002105909/-1/-1/0/SWAP.REPORT_MAIN.BODY.3.21.19.PDF
https://oig.hhs.gov/oei/reports/oei-06-14-00350.asp
https://ieeexplore.ieee.org/document/1204375
https://discover.dtic.mil/section-809-panel/

94 DE-RISKING GOVERNMENT TECHNOLOGY

that lead to suboptimal outcomes.” The Department of Defense is
not alone in its troubles. Policies, processes, and cultures that are
resistant to change are common in government agencies.

Often this resistance is due to the weight of “outside pressures” that
are beyond their control. But, what we can control as public servants
is choosing to approach government technology projects differently
than we have in the past and acting on the knowledge that traditional
attitudes and methods don’t work and organizational inertia is harmful.
You can avoid “suboptimal outcomes” by applying the methods,
tools, processes, and recommendations in this guide.

This work is not easy, but it is possible and it gets easier the more
you do it. If you’re struggling to figure out where to start, try beginning
with a small project or small piece of a project. Or try using one
method on a current project.

The important word here is “try.” Adopting new practices and
cultivating them within an organization takes trial, error, and time.
Don’t expect instant success. Each “mistake” will be a learning
moment and opportunity to try something different. Legacy practices
will likely coexist with new ones for a while. Celebrate small wins. Find
champions of change and work together. Adapting to using iterative
software development requires agility and openness in your attitude
as well as your practices.

The real challenge is not following the practices in this guide. It’s
doing so again and again. Software is never done. It needs constant
“care and feeding” so that it continues to work for people and our
changing needs. The most difficult work is the commitment to doing
the work despite its challenges.

Software will
never be done

07

Resources

RESOURCES 97

This appendix of resources includes:

¢ An in-depth guide to conducting market research

¢ An in-depth guide to evaluating proposals and bids, including an
downloadable evaluator worksheet

e A set of best practices for open source software security

e Sample questions to ask a vendor during verbal interviews

e A sample agenda for a kick-off week with a vendor development
team

e A sample Quality Assurance Surveillance Plan (QASP)

98 DE-RISKING GOVERNMENT TECHNOLOGY

How to conduct market research

The goal of conducting market research is to understand the
marketplace for a service or product before you enter into a contract
of any type. Good market research prepares an agency to enter into
a competitive bidding process, which is legally binding, with a clear

understanding of the service or product and how to recognize quality.

Market research has two distinct phases and purposes:

1. Market surveillance is a continuous process to stay informed
about industry trends, new technologies, and other information
about a marketplace of goods and services needed to fulfill an
agency’s mission.

For instance, if you were doing market surveillance research for
user experience (UX) research and design services, you would ask
questions like:

o What is “user experience”?

o What does the practice of user experience design consist of?

o What makes for a good user experience?

[}

What are the characteristics of developers of good user
experiences?

o

What qualifications and experience do these developers have?

Market surveillance is strategic. Consistent market research
gives you a good grasp of accurate, relevant, and timely
information about a market. This knowledge makes it easier for
an agency to complete a market research report or an acquisition
plan as needed.

RESOURCES 99

2. Market investigation is research focused on specific sources,
materials, or potential competitors to fulfill a particular agency
requirement. It is usually done to complete a market research
report for an active procurement.

It involves more pointed questions than those used in market
surveillance. If you were doing market investigation for UX research
and design services, your questions would be:

o Who has delivered products with a good user experience?
o Where can | find a good user experience provider?

o Are there professional associations or conferences for user
experience?

= Are there trade publications or other information sources about
user experience?

« What have they worked on? Have they worked with
government agencies before?

o Do any of these companies have existing contracts through
an available Federal Supply Schedule (FSS), another
Governmentwide Acquisition Contract (GWAC), or any kind of
pre-established vehicle or framework that reduces acquisition
effort without sacrificing quality in the final product?

o Are any of them under a recognized socioeconomic program or
status, such as the 8(a) program or Service-Disabled Veteran-
Owned Small Business (SDVSOB) program?

While it’'s common to think that market surveillance always

comes before market investigation, they often happen in parallel
because each informs the other. Use both market surveillance and
investigation to understand what is available.

Before starting, keep in mind that market research shouldn’t identify
a preferred or specific manufacturer, model, or brand. Doing so

https://www.gsa.gov/buying-selling/purchasing-programs/gsa-schedules
https://www.gsa.gov/technology/it-contract-vehicles-and-purchasing-programs/governmentwide-acquisition-contracts
https://www.sba.gov/federal-contracting/contracting-assistance-programs/8a-business-development-program
https://business.defense.gov/Socioeconomic-Programs/SDVOSB/

100 DE-RISKING GOVERNMENT TECHNOLOGY

eliminates all of a buyer’s negotiating power. Market research is a
forecasting exercise. It can’t be used in place of the government’s

source selection or evaluation process to determine a contract award.

It also can’t favor a specific vendor that may eventually be awarded a
contract. So, don’t rush from market surveillance to investigation and
forget to continue surveillance. Fight the urge to pick a single brand
name or company.

Also, expect things to change. Needs often change by the end of a
market research process.

SOURCES OF MARKET INFORMATION

As a best practice, government buyers should rely on many primary
and secondary sources of information.

Primary sources include:
e \endors

o Manufacturers

o Distributors

o Resellers

e Other buyers
o Private sector
o Other agencies
o Colleagues

o Nonprofit organizations

RESOURCES 101

¢ Independents
o Experts
o Specialized consultants

o Research companies

Secondary sources include:

e White papers or similar position statements
e Trade journals

* News reports

e Academic journals

e Subject-matter literature

e Databases

e Case studies

ENGAGING WITH SOURCES

Agencies can engage directly or indirectly with a source.

Direct contact is when an agency communicates with a source in
conversation or writing. A source may provide a lot of information, but
the agency should weigh this information carefully since the source
may be a future competitor.

Indirect contact is when a researcher reviews material without
directly engaging a potential future competitor or talks with an
impartial party.

Most market research should be done indirectly. It is easier than direct
and less prone to the risk of creating bias towards a vendor.

102 DE-RISKING GOVERNMENT TECHNOLOGY

REQUESTS FOR INFORMATION (RFIS)

Requests for Information are a popular market research tool. Often
they’re the only market research an agency conducts before awarding
a contract.

RFIs have a place in market research, such as when the government
truly has no idea how it could solve a problem or satisfy a need. But
more reliable information can be found through indirect research on

the internet.

Before using an RFIl, consider that:

e RFls usually consist of a set of questions that can’t respond to
changing agency needs. They’re not a dynamic, evidence-based
form of inquiry that develops over a period of time.

¢ Responding to an RFl is a lot of work for most businesses,
especially small companies and companies new to competing for
government contracts.

¢ Most RFIs are made up of boilerplate marketing material —
regardless of the agency or topic.

e RFls increase the likelihood of a protest because even though
vendors reuse content, they are labor-intensive and often expensive
for a company to prepare.

RESOURCES 103

MITIGATING THE RISKS OF VENDOR SALES AND
“CAPTURE MANAGEMENT”

The U.S. government is the largest buying entity in the world. In
general, government agencies are primary targets for vendor sales
and “capture management” or “capture planning,” in which a
company tries to gain an advantage for winning a contract.

Common sales tactics include:

¢ Cold contact: Someone you've never met calls or emails you about
their company and offerings and how they can help you.

¢ Name-dropping: A salesperson tries to gain influence with you by
mentioning the name of someone higher up in your agency than
you or suggesting they’ve talked with someone in your agency with
influence over the project.

e Networked introduction: The vendor develops a good reputation
with one customer and then asks that customer to introduce or
refer them to other potential customers within an organization.

e Big pitch: The vendor engages in a broad or organized effort to
present to a large group of agency staff to nurture excitement
and interest in buying their company’s product, service, or other
offering.

While salespeople can help educate potential customers about their
company’s offerings and reflect on their needs, sales capture is rife
for potential abuse.

Government employees work on behalf of the American public

and have ethical and professional standards by which they must
conduct themselves. Numerous laws and regulations also guide the
communication or actions of government employees.

https://obamawhitehouse.archives.gov/sites/default/files/omb/procurement/memo/Myth-Busting.pdf

104 DE-RISKING GOVERNMENT TECHNOLOGY

RESOURCES 105

Employees that don’t adhere to these standards, such as guidance
provided in FAR 9.5 for Organizational and Consultant Conflicts

of Interest, may face civil or criminal penalties. Depending on the
violation, this could mean fines, suspension, firing, and even felony
prison time.

Those standards, laws, and regulations shouldn’t deter government
employees from interacting with vendors as part of market research.
They provide needed protection from aggressive sales tactics.

Keep all interactions with salespeople professional, transparent, and
courteous. And keep in mind:

¢ Any information shared could directly affect that vendor’s
preparation of a proposal. By law, all vendors that could fulfill the

agency'’s requirements must have the exact same information. If one
vendor is given more or different information they may gain an unfair

competitive advantage. If information isn’t shared consistently, it
could lead to a protest.

¢ All government personnel have a responsibility to protect
proprietary or confidential information and not share it with
companies or potential competitors.

e Government personnel must avoid the appearance of commitment
before the contract is awarded. Only a person that is officially
delegated with the authority to award and sign contracts can
obligate the government to an agreement with a contractor.

To avoid giving one vendor more or different information than others:

e Start every conversation with a disclaimer like:

o “Nothing discussed in this meeting authorizes you to work, start
work, or otherwise obligates the government. This conversation is
only for market research purposes. Any assumption on your part
or on the part of your company is a mistake and has no effect on
the government.”

o “We are talking for market research purposes only. This
conversation in no way obligates the government or should make
you believe that we have entered into a contract of any kind.”

e Treat all potential bidders fairly and impartially.

¢ |Imagine that all interactions with vendors have a public audience.

To assess the fairness of a potential action, consider if an impartial,
casual observer would believe you, as a government employee,
acted responsibly and reasonably.

¢ Reach out to experienced procurement professionals to learn best

practices for conducting interactions, documenting exchanges, and
developing requirements for competitive solicitations.

https://www.acquisition.gov/far/subpart-9.5

106 DE-RISKING GOVERNMENT TECHNOLOGY

RESOURCES 107

How to evaluate proposals and bids

It is common for agencies to use a scoring scheme to evaluate
vendor proposals and bids. We recommend a different method that
creates a detailed and defensible justification of the government’s
vendor selection, which a scoring scheme does not. It also allows
the government to give feedback to the vendors that didn’t receive
the award by simply summarizing the proposal’s documented pros
and cons.

As you will have explained in the solicitation for a performance-
based services contract, this approach regards the three technical
evaluation factors — technical approach, staffing approach, similar
experience — combined as significantly more important than the
price in evaluating the strength of a proposal.

Following are evaluation criteria for each of those technical factors.
Each set includes positive signs and red flags to look for as you
review proposals. They aren’t exhaustive, but should help an
evaluation team get started and decide which vendors to interview.

Use our evaluator worksheet as a tool during the review process.

TECHNICAL APPROACH

Ideally, the vendor proposes to use modern software development
practices. The proposed approach should be appropriate for the
scope of work and demonstrate technical proficiency.

Evaluate answers from the verbal interviews as part of the technical
approach.

Competency

Positive signs
e Demonstrates knowledge of their preferred tools and methods, and
is able to explain why they are appropriate for the project

Red flags
¢ Misidentifies core technologies in a way that shows inexperience
communicating about or using them

¢ Proposes a highly complex approach or uses highly complex
language that confuses rather than clarifies

Proposes to outsource core technical competencies

Doesn’t mention using secure code practices

Doesn’t value testing code

Lack of novelty

Positive signs
e Recommends established software and infrastructure, as well as
use of proven and effective design patterns

Lack of certainty

Positive signs

e Highlights areas of uncertainty in their technical approach (Since
a vendor can’t know if a proposed approach will be effective until
development begins, they should be candid that they can’t be sure.)

108 DE-RISKING GOVERNMENT TECHNOLOGY

Vision

Positive signs
¢ Interprets the intended outcomes in a way that can enable the
agency’s vision

Program goals

Positive signs
e Demonstrates a clear grasp of the agency’s mission and project’s
aims described in the solicitation

Red flags
¢ Doesn’t understand program goals that were described clearly in
the solicitation

Open source software

Positive signs
¢ Has experience developing open source software

Red flags
e Doesn’t have experience developing open source software

Collaboration and communication

Positive signs

e Expects to work with an agency product owner and for that
person to be an active team member — one who communicates
proactively about risks and roadblocks

RESOURCES 109

User research

Positive signs

Expects to conduct regular and ongoing user research to
understand user goals and needs, and to use research findings to
build features that support those goals and needs

Includes how qualitative and quantitative data will be leveraged to
inform product and design decisions

Has a plan to conduct user research and test everything from rough
prototypes to finished software with actual users throughout the
entire design and development process

Seeks research participants from diverse backgrounds.
Describes target groups for research

Research will be done with people who will actually use the service,
ideally people with diverse perspectives and differing abilities

Research plan involves people:
o Who have disabilities or use assistive technologies
o With limited digital skills or low literacy

o Who may need help using the service in question

Research plan mentions:

o Respect for participants

o Informed consent

o Potential harms and how they will be reduced

o Diversity, inclusion, honesty, and transparency

Research plan methods are appropriate and the timeline is feasible

Combines user research with usability testing to ensure that
features are meeting user needs

110

DE-RISKING GOVERNMENT TECHNOLOGY

Red flags

Doesn’t indicate that they will use user research to determine the
design or the technical approach

Proposes a process that includes working for long stretches of time
without interacting with the agency and/or users

Proposes using focus groups instead of structured one-on-one
research interviews or usability testing sessions

Doesn’t use research methods appropriate to research goals (e.g.,
using surveys to uncover user needs or usability testing to validate
user goals)

Design is described as User Acceptance Testing, performed only at
the end of a project

Displays low maturity in UX research and design practices:

o Research goals, questions, methods, and expected outcomes
don’t align

o Doesn’t understand the difference between users and
stakeholders

o Doesn’t provide a user recruitment approach or interview protocol
provided

User-centered design

Positive signs

Follows a user-centered design process (They explain how they
make design decisions in relation to broader user goals and specific
needs learned through user research.)

Indicates that design is considered part of the cross-functional agile
development team — it doesn’t operate in a silo

RESOURCES 111

Red flags

e Proposes that requirements will be collected from the business
owner, rather than determined according to user needs uncovered
through research

e Prioritizes aesthetics over usability and usefulness

e Can’t explain their design decisions

Development infrastructure

Positive signs
¢ Focuses on automation, reliability, testability, infrastructure as
code, etc.

¢ Refers to modern automation and deployment tooling like Jenkins,
Puppet, Chef, Travis ClI, CircleCl, Kubernetes, Terraform, AWS,
and Heroku

Accessibility

Positive signs
e Offers specific, detailed description for how the team will build
accessibility and testing into the development process

e Lists applicable, up-to-date government accessibility standards
Red flags

e Doesn’t mention accessibility or explain how they will evaluate if
their software meets accessibility standards

e Offers “shall comply” without citing specifics, such as Sec. 508 and
the protocol for satisfying it

112 DE-RISKING GOVERNMENT TECHNOLOGY

Other

Red flags
e Bypasses page-limit rules in their proposal by using a tiny font size,
reduced leading, etc.

* Proposes long-term staff augmentation

STAFFING APPROACH

You want evidence that the staff has experience in their areas of
expertise.

In addition, if the developers have presences on social coding
platforms (for example, GitHub, GitLab, Bitbucket), review them to
consider:

e What kinds of projects have they worked on?

What languages have they worked with?

Is their code readable?

Does their code follow best practices for organization?

If their projects are open source, are they being actively used
or forked?

Do their projects show expertise that doesn’t appear in their
qualifications?

Team size and roles

Positive signs

e Fewer than 10 team members, each of which has a clear role
and purpose

RESOURCES 113

Red flags
e Specifies too many key personnel, especially with individuals whose
expertise overlaps with that of agency staff

e Over-staffs the bid (If a vendor proposes a team that consists of
people with far more experience than necessary, or more people
than necessary, it suggests they either don’t understand modern
software development practices or are just trying to over-staff the
engagement.)

e Under-staffs the bid (A vendor might try to win the bid by proposing
a smaller team than it knows is needed for the project, with the plan
of increasing the size of the team later.)

e Proposes positions that aren’t needed in an iterative development
project, such as business analysts, enterprise architects, delivery
managers, etc.

e “Access to a database of resumes” is provided, but specific
technical staff are not named

Team capacity

Positive signs

e The team will be assigned to the project full-time and won’t split
members’ time with other projects (Developers, user researchers,
designers, and all other key personnel should be fully staffed. A
Scrum master or agile coach can be exceptions.)

Red flags
e The most qualified team member is allocated a small amount of
time on the project

e Proposed staff don’t currently work for the contractor and a letter(s)
of intent from the proposed staff is not provided

114 DE-RISKING GOVERNMENT TECHNOLOGY

e Key staff aren’t proposed to be full-time on the project, or the
project is to be staffed with mostly partial full-time personnel

Technical team’s specialized experience and knowledge

Positive signs
e Experience with modern software languages, such as Python, Ruby,
PHP, C# (C Sharp), or JavaScript

e Experience with web-based application programming interfaces
(APIs), especially REST and GraphQL

e Experience using Git for software version control

e The lead developer’s skill set and experience will enable them to
conduct the work required by the project

Red flags
e The proposed lead developer lacks sufficient qualifications

¢ Proposes outdated software technologies that don’t have an active
developer community, e.g., ColdFusion, ASP, or FoxPro

e Lack of experience with test automation, aka DevOps or test-driven
development (TDD)

¢ Proposed staff qualifications are copied in large part or completely
from the internet

e Key skills don’t appear in any qualifications, such as:
o Agile development experience
o Automated (unit/integration/end-to-end) testing
o Continuous Integration and Continuous Deployment

o DevOps

[}

Application Protocol Interface (API) development and
documentation

o Open source software development

RESOURCES 115

o Cloud deployment

o Building and testing public-facing sites and tools

Research, design, and product team members’ specialized
experience and knowledge

Positive signs
e The lead user researcher’s background demonstrates:

o Understanding of how research can inform and shape
strategy, design, and development

o Familiarity with a variety of user research and usability
testing methods

o Experience deciding the method or methods to use that suit
a given research question

o Experience recruiting research participants appropriate to
a project

e The lead UX designer’s background demonstrates:

o Strong craft skills and experience generating concepts that reflect
overall project strategy, user research, and user-centered design
best practices

o Experience and ability communicating those concepts visually
via a variety of methods, including sketching, wireframing,
prototypes, and more polished mock-ups

Red flags
e The company, proposed subcontractor, or proposed staff are
responsible for poorly designed websites

116 DE-RISKING GOVERNMENT TECHNOLOGY

e Key skills don’t appear in any qualifications, such as:
o Product management and strategy

o User research, such as contextual inquiry, stakeholder interviews,
and usability testing

o User experience design

o Sketching, wireframing, and/or prototyping, and user task flow
development

o

Visual design

o

Content design, UX writing, and copywriting

SIMILAR EXPERIENCE

As part of the solicitation, you will have asked vendors to submit code
repositories for projects that are similar in size, scope, and complexity
to what the agency needs. If you do not have someone on your
evaluation team that is familiar with code repositories, you should find
a technical advisor.

Technical evaluations

Positive signs
e Proper use of Git, commit changes with personal accounts (not
organizational)

e Use of a branching or merging strategy
¢ Informative comments

e Evidence of peer code reviews and collaboration (work was
performed in a reasonable number of GitHub comments)

e Use of a CI/CD pipeline

RESOURCES 117

e Code that conforms well to the quality expectations in the
solicitation’s QASP or set of quality indicators

e Substantial projects: the projects weren’t created just to have
something to point to for this solicitation

e |terative incorporation of user feedback into their
development process

e Demonstrates the value of testing:
o Testing is built into the development process

o Code tests are written well, test coverage is measured and covers
most of the code

e Use of consistent code style
e Code displays modularity and opportunities for reusability
¢ Sensible data model approach

e Code includes evidence of accessibility considerations (e.g.,
appropriate alt text, ARIA attributes)

e Evidence of accessibility testing: at minimum, an automated scan;
more importantly, manual testing

e The project is set up to be easily deployable by any newly
onboarded developer

Red flags
¢ No source code is submitted

e There is no Git history or only a single commit, which indicates
that this is not the actual code repository and that the code was
developed somewhere else (maybe not even with source control)

¢ None of the provided code samples or described projects are
similar in size, scope, and complexity to the project scenario in
the RFQ

118 DE-RISKING GOVERNMENT TECHNOLOGY

¢ The code samples provided do not demonstrate an understanding
of writing a modern, maintainable application

e Code is undocumented; there are no code comments
e No automated tests

¢ The code has obvious vulnerabilities for attacks (e.g., missing SSL
certificates, SQL injection attacks, credentials checked into the
code, use of unvalidated JWTs)

e Tests are disabled, which suggests that developers may have
turned testing off instead of fixing errors; there seems to be a
practice of deleting tests or code until the code passes

e Code appears sloppy; there are large sections commented out,
unused imports and definitions, or dead code (code that is in the
project but is never used)

¢ No instructions for setting up the project or documentation is
boilerplate (e.g., a README)

e Code contains secrets such as passwords, personally identifiable
information, or access tokens

¢ The cited projects lead you to suspect the vendor didn’t
create them

e There’s a finished product, but no code, or vice versa

Programmatic evaluations

Positive signs
e Work that is conceptually similar to the agency’s needs

e Work that is centered on user needs

e Work that was completed by a team of a size similar to the size of
the team that they’re proposing

RESOURCES 119

¢ Design artifacts that show continuous and ongoing usability testing
and that indicate a user-centered approach to iterative design and
development

e lllustrates getting stakeholder buy-in on research findings

e Demonstrates that they are comfortable with complexity and
challenges

e Communicates openly and emphasizes transparency

e |dentifies what is important to each set of stakeholders and tailors
their approach accordingly

e Describes frameworks and tools that support iterative development,
constant improvement, user-centered design, risk management,
and product prioritization

Red flags
e The cited projects aren’t similar in size, scope, or complexity to that
described in the solicitation

e Work that is led by solutionism

e The projects don’t include design artifacts and research plans, or
the plans are incomplete

e The projects don’t include design artifacts and research plans, or
the plans are incomplete

120 DE-RISKING GOVERNMENT TECHNOLOGY

Evaluator worksheet

Evaluator name:

Offeror or vendor:

Date of evaluation:

Have you signed and returned your COI and confidentiality forms?

From the RFQ:

The non-cost evaluation factors are of equal importance. The three (3)
technical, non-price evaluation factors when combined, are significantly
more important than price. The government may make an award to an
offeror that demonstrates an advantage with respect to technical, non-
price factors, even if such an award would result in a higher total price
to the government.

» Factor 1: Technical approach
» Factor 2: Staffing plan

+ Factor 3: Similar experience

QUALITATIVE EVALUATION

We will be doing narrative, qualitative evaluation. Quotes will not be
scored numerically.

Therefore, it is critical that we evaluate the quotes based on what we
put down in the solicitation.

RESOURCES

121

How do you evaluate a proposal qualitatively?

¢ Provide as thorough of a narrative description as you can on this

worksheet.

e Base your decisions on the factors and descriptions identified in the

solicitation.

e Use common sense to consider real-world implications. Imagine
your, or your agency'’s, day-to-day work needs.

Do’s and don’ts

Follow these tips when evaluating quotes. Please refer to your
contracting officer with any questions.

Do evaluate quotes against the
solicitation requirements.

Do look carefully at the text in the
technical quote that may include
statements and/or assumptions that
could indicate increased cost or price
and/or risk to the government.

Do adequately document your reasoning
for any potential increased risk to the
government on the evaluation form for
the contracting officer’s review.

Do provide comments that are clear and
plainly written.

Do be fair and consistent in the proposal
evaluation. If an item is a strength or
weakness for one proposal, it should
also be noted as a strength or weakness
when it appears in other proposals.

Don’t make assumptions. Evaluate the
text in the tech quote and do not rely
on outside information for technical
evaluations.

Don’t compare proposals against

one another. They must be evaluated
individually against the evaluation factors
in the solicitation.

Don’t rank or compare quotes. Only
determine if they meet, or do not meet,
the acceptable standards specified in the
solicitation.

Don’t take it easy or be overly harsh.
Fairly evaluate all proposals against the
requirements of the contract. Be critical,
but fair in your evaluation.

Don’t consider price when evaluating
technical quotes. These evaluations
should be completed separately from
each other.

122 DE-RISKING GOVERNMENT TECHNOLOGY

Strengths and weaknesses

For each evaluation factor — technical approach and staffing plan,
key personnel, and source code — we will evaluate and analyze
strengths and weaknesses that will be used as the basis for the
confidence ratings (high, some, and low) for each factor.

A strength is an attribute that, within the confines of the evaluation
criteria, would raise the evaluation above neutral.

A weakness is an attribute that, within the confines of the evaluation
criteria, would reduce the evaluation below neutral.

For each strength and weakness you identify in a quote, use words

that qualitatively describe that strength or weakness in narrative form.

For example:

Strength: On page X, contractor two states that they offer their
employees two weeks of paid time off to attend training sessions every
year. This encourages retention and staff growth which is important to
the government to maintain a consistent level of service to their internal
and external customers. This also allows the contractor to provide the
most qualified and trained staff.

Weakness: Contractor one, page 10, paragraph four. The contractor
does not appear to understand the direction of the program nor the
intent of the contract and has specified an approach that has proven
unsuccessful on this program in the past and that was communicated in
the solicitation.

RESOURCES 123

Don’t write narrative explanations that are vague or reflect subjective
opinion. For example:

Weakness: Contractor one’s approach to training is overly burdensome
for the government compared to contractor three’s.

Weakness: The technical proposal doesn’t address what we asked for.

Strength: | really like what contractor one wrote. It's exactly what we're
looking for.

Confidence ratings
Once you've identified strengths and weaknesses for each factor,
you’ll assign a confidence rating to the factor as defined below:

High confidence: The government has high confidence in the portion
of the quotation, and that the risk to the government is low.

Some confidence: The government has some confidence in the
portion of the quotation, and that the risk to the government is low
or moderate.

Low confidence: The government has low confidence in the portion
of the quotation, and that the risk to the government is moderate
or higher.

For any questions, concerns or comments, please do not hesitate to
ask your contracting officer.

You should also refer back to the solicitation if you are unsure or do
not understand any portion of it.

124 DE-RISKING GOVERNMENT TECHNOLOGY RESOURCES 125

EVALUATION FACTOR 1: TECHNICAL APPROACH EVALUATOR SECTION - FACTOR 1

From the RFQ:
Strengths:

INSTRUCTIONS TO OFFERORS:

The technical approach must set forth the contractor’s proposed

approach to providing the services required, including the base software

(if any) and programming language(s) the contractor proposes to use.
The technical approach must also make clear that the contractor

understands the details of the project requirements. The technical
approach must also identify potential obstacles to efficient development

. . , Weaknesses:
and include plans to overcome those potential obstacles. The technical

approach must also include a description of the contractor’s plans, if

any, to provide services through a joint venture, teaming partner, or
subcontractors.

EVALUATION BASIS:

In evaluating a contractor’s technical approach, the government will

consider (a) the quality of the contractor’s plans to provide the open Factor confidence rating:

source, agile development services required, including user research

and design, (b) the extent of the contractor’s understanding of the

details of the project requirements, and (c) the extent to which the

contractor has identified potential obstacles to efficient development,

and has proposed realistic approaches to overcome those potential

obstacles.

Comments and questions:

126 DE-RISKING GOVERNMENT TECHNOLOGY

EVALUATION FACTOR 2: STAFFING PLAN

From the RFQ:

INSTRUCTIONS TO OFFERORS:

The staffing plan must set forth the contractor’s proposed approach to
staffing the requirements of this project, including the titles of each of the
labor categories proposed and proposed level of effort for each member
of the contractor’s development team (full time, half time, etc.).

The staffing plan should identify the proposed qualified individuals for the
three (3) key personnel.

Contractors proposing key personnel who are not currently employed
by the contractor or a teaming partner must include a signed letter of
intent from the individual proposed as key personnel that they intend

to participate in this project for at least one year. The staffing plan must
also set forth the extent to which the proposed team for this project was
involved in the development of the source code referred to in the next
paragraph.

The staffing plan must set forth and explain the extent to which the
contractor will provide individuals with experience in most the following

areas:

e Agile development practices

e Automated (unit/integration/end-to-end) testing

e Continuous Integration and Continuous Deployment (CI/CD)

e Refactoring to minimize technical debt

e Application Protocol Interface (API) development and documentation
e Open source software development

e Cloud deployment

RESOURCES 127

e Open source login and/or authentication services
e Product management and strategy

e Usability research, such as (but not limited to) contextual inquiry,
stakeholder interviews, and usability testing

e User experience design

e Sketching, wireframing, and/or prototyping, and user-task flow
development

e Visual design

e Content design and copywriting

e Building and testing public facing sites and tools
e User outreach and/or user adoption

e Database design and SQL queries

e Security and compliance

In addition to these baseline skills, you must also provide information
about your recruitment, retention, and training for your personnel as the
needs of the individual team composition may change over time during

the course of development.

To understand your approach to recruitment, identify and provide

an adequate description of your strategy to find qualified personnel
generally and for the proposed personnel in your quote submission. As
part of this, please provide an explanation of the process undertaken

to ensure proposed employees staffed in each labor category meet the
specific qualifications and have the requisite skills for the position. To
understand your approach to retention, identify and provide an adequate
description of your strategy to minimize staff turnover.

128 DE-RISKING GOVERNMENT TECHNOLOGY RESOURCES 129

EVALUATION BASIS: EVALUATOR SECTION - FACTOR 2

In evaluating a contractor’s staffing plan, the government will consider
(a) the skills and experience of the key personnel and other individuals
that the contractor plans to use to provide the required services, (b) the Strengths:

mix of labor categories that will comprise the contractor’s proposed

development team, (c) the contractor’s proposed number of hours of
services to be provided by each member of the contractor’s proposed

development team; and (d) the contractor’s approach for recruiting and

retaining qualified personnel.

Weaknesses:

Factor confidence rating:

Comments and questions:

130 DE-RISKING GOVERNMENT TECHNOLOGY

EVALUATION FACTOR 3: SIMILAR EXPERIENCE

From the RFQ:

INSTRUCTIONS TO OFFERORS:

You shall submit two (2) source code repositories.

This must be either links to Git repositories (either credentialed or
public) or to equivalent version-controlled repositories that provide the
evaluation team with the full revision history for all files. If a contractor
submits a link to a private Git repository hosted with GitHub, the
government will provide the contractor with one or more GitHub user
identities by email, and the contractor will be expected to promptly

provide the identified user(s) with access to the private Git repository.

The source code samples should be for projects that are similar in size,
scope, and complexity to the project contemplated here. The source
code must have been developed by either (1) the contractor itself, (2)

a teaming partner that is proposed in response to this RFQ, or (3) an
individual that is being proposed as key personnel for this project. The
government would prefer that the source code samples have been for
recent projects involving teams of approximately four to seven full-time

equivalent (FTE) personnel.

If the references to source code samples provided do not include
associated references to user research plans and design artifacts
demonstrating how ongoing user research was incorporated into the
project, then the contractor must submit a user research plan and design
artifacts relating to at least one (1) of the source code samples provided.

RESOURCES 131

EVALUATION BASIS:

In evaluating a contractor’s similar experience, the government will
consider the extent to which the contractor has recently provided
software development services for projects that are similar in size,
scope, and complexity to the project described in this RFQ, and the
quality of those services. In evaluating the quality of those services, the
evaluation team will consider, among other things, the revision history
for all files in the source code samples provided. The government will
also consider the user research and design-related artifacts that were
associated with the source code samples provided or submitted
separately. In considering a contractor’s similar experience, the
government may also consider information from any other source,

including contractor’s prior customers and public websites.

132 DE-RISKING GOVERNMENT TECHNOLOGY

EVALUATOR SECTION - FACTOR 3

Strengths:

Weaknesses:

Factor confidence rating:

Comments and questions:

RESOURCES 133

Best practices for open source software
security

This is a high-level explanation for keeping data, static assets,
secrets, and code safe in an open source project. Always work
with your security team to make sure your project aligns with your
agency’s requirements.

Learn more about secure implementation of open source software in
the DoD Open Source Software FAQ.

KEEP DATA SAFE

Keep data, such as page content or form responses, in a database.

Ensure data is not shared when source code is published.

o To do that, don’t hard-code data into the code and use a
database or API for data retrieval.

Databases need to be encrypted at rest and enable necessary
logging.

e Manage your databases by routinely checking on access
permission and logs.

Make sure necessary data is backed up.

KEEP STATIC ASSETS SAFE

Static assets are information that is kept in files, such as media
uploaded by site administrators or configuration files copied from the
code base. To keep them safe:

e Separate private files from public files.

https://dodcio.defense.gov/Open-Source-Software-FAQ/

134 DE-RISKING GOVERNMENT TECHNOLOGY

¢ Require access keys to read or write to secret files.

e Automatically rotate credentials, log access records, and audit
permissions and access.

¢ For public files, there will be publicly viewable assets, but they
should never have public write permissions.

KEEP SECRETS SAFE

Secrets like passwords, database configuration, connection, or
account information should never go into a code base. To keep
these safe:

e Store secrets and passwords for production in your hosting
environment with configuration tools that encrypt secrets. This
prevents the hosting service and malicious actors from getting
access to them.

¢ As part of change control tooling, developers should use tools
that check for common patterns of secrets in code in their local
environment so they don’t become pubilic.

e CI/CD tooling should not write out any secrets in its build output so

anyone with access to the build logs won’t be able to see that data.

KEEP CODE SAFE

In this context, “code” refers to the program instructions that make
the application run that aren’t covered in the above categories. These
include:

¢ Basic configuration that should be the same across environments
¢ The instructions and rules for your application

* Which modules to install

RESOURCES 135

e Themes and templates (css, html, etc.)
¢ Images like logos and favicons

¢ Tickets and nonsensitive discussions about code

To keep code safe:

e Keep private information and files out of the codebase and with
your secure data and assets, as described above.

e Carefully review third-party packages.

e Use alerts for software updates and promptly apply security
patches.

¢ Discuss potential security vulnerabilities in a private setting.

When an open source code
base is used by a strong
community of developers,
everyone benefits from

this active refinement as it
continuously improves the
code’s quality and security

136 DE-RISKING GOVERNMENT TECHNOLOGY

Sample verbal interview questions

During acquisition, verbal interviews are an opportunity to clarify
the technical approach described in a contractor’s proposal. (In the
federal context, they are different from oral presentations under FAR
Part 15 and do not permit a contractor to amend or change their
proposal.)

Draw from the following questions to get details that will help you
evaluate a vendor’s experience with modern software development

practices. Ask clarifying questions about a vendor’s answers, either to
reveal more information pertinent to a project or to explain an answer

that seems odd.

RESOURCES 137

ENGINEERING

¢ Talk about your process for determining which software and
programming languages the development team would use to
build the software, and explain the rationale for choosing those
languages.

e What is your technology stack of choice for this project? Why?
Which technology stacks does this particular team have the most
experience with? What other stacks or technologies is the team
experienced with?

¢ Describe your technical development and collaboration process.
Please specify your approach to version control, testing (and test-
driven development), accessibility, and continuous integration and
continuous deployment.

¢ Discuss the technical decisions you’ve made in your proposal and
any questions they raise for this project.

e How will you approach technical oversight? How would you track
the standards described in the quality expectations (or QASP)?

e How would you identify deep problems within a code base? How
would you address those problems to reduce technical debt? What
types of re-factoring strategies would you consider?

e What do you anticipate as the largest risks in back-end
development?

¢ How do you intend to address data security needs and
requirements?

e Tell us about a time you came into the middle of a development
effort. What challenges did you face? How did you overcome
them? How do you envision integrating yourself within the existing
development effort?

¢ Please describe your technical lead’s experience with [name of
programming language].
e Tell us about a system you built on top of some infrastructure- or

platform-as-a-service.

e Tell us about an infrastructure problem that you helped solve, such
as slow application performance, unexpected downtime, a security
breach, etc. What was the problem and how did you solve it?

COLLABORATION

* How would you ensure good communication within the team and
with government partners?

e How do you see the designers and developers interacting as you
build the product?

e How would you like the [agency] to be involved as you design and
build the product?

138 DE-RISKING GOVERNMENT TECHNOLOGY

What activities do you plan on engaging in to build and ensure
strong collaboration among the team?

e How can you ensure that the various members of your team
coordinate and collaborate across functions during performance
and delivery?

e How do you typically communicate your findings and strategic
recommendations to a client? How do you frame findings that might
challenge your client’s assumptions?

e Have you ever worked with a remote or distributed team before?

e |If yes: What tools and/or mechanisms have you used to help
promote open dialogue and foster communication on the team?
How have you overcome communication challenges and barriers?

¢ If no: What challenges do you anticipate? What do you think you’ll
need to succeed?

STAFFING

e |f awarded the contract, how would you quickly staff your design
and/or development team?

e Tell us more about the different team roles you envision for
this project.

RESEARCH AND DESIGN

e How do you plan to address the needs of the multiple user groups
for this product?

e How have you incorporated changes into projects based on
user research?

e What do you think are the most important features that users will
interact with in the system?

RESOURCES 139

e How would you design a usability test for an iteration of this
product? What participants would you recruit? What tasks would
you test? How would you analyze the results?

e How would you go about identifying a visual feel and content tone
for the project?

e How would you bring the full team and stakeholders into the
research and synthesis process?

e What is your experience with usability testing?

e Describe a time when user research findings disproved a team’s
assumption on one of your projects. What was the situation? What
did you do? What did you learn?

PRODUCT AND STRATEGY

e What do you think are the most important risks for this project and
how will you help [agency name] mitigate them?

¢ What do you need from the government product owner to make this
project succeed?

e How will you help develop the product vision and prioritize features
for development? How will you approach the process of prioritizing
features to build throughout the project?

¢ Tell us about a project you led that was particularly challenging or
complex. How did you approach it? How did it work out?

e How would you handle a request from the agency for a feature that
you don’t think is needed?

140 DE-RISKING GOVERNMENT TECHNOLOGY

ITERATIVE DEVELOPMENT

Describe the agile project management practices and tools you
would use for estimating, planning, and managing risk, and for
team collaboration and communicating status. Why use them
in particular?

How will you keep developers, designers, and researchers engaged
in building features to fulfill a user story without having to extend a
sprint or rely on a waterfall development process?

How will the development team interact with the government
product owner to ensure sprints are sized reasonably for the
development team?

If the team encounters a task that requires more work than originally Ve rba I I nte rVI ews

anticipated and that can’t be completed in the current sprint, how

would you alert the government product owner? a re a c riti ca I q u a I ity

Tell me about your experience with agile software development or

other iterative development styles. How does practicing agile affect Co ntro I m eas u re

the technical choices you make?

142 DE-RISKING GOVERNMENT TECHNOLOGY

Sample kick-off week agenda

DAY 1

Session 1: Introduction (60 minutes)
Purpose: The vendor team meets agency staff responsible for the project.

Attendees: Active project members only. Consider inviting a senior executive to
kick off the meeting to signal the importance of the project and how invested the
agency is in its success.

Session 2: Contract logistics (30 minutes)
Purpose: The contracting officer goes over contract administration items such as
invoicing, delegation of duties, etc.

DAY 2

Session 1: What the agency knows or has learned so far (60
minutes)

Purpose: Recap discovery phase findings.

Session 2: QASP and deliverables (90 minutes or less)

Purpose: Review the deliverables and associated quality indicators or QASP
elements. Create a schedule for when to revisit the quality indicators or QASP
(and when to update it, if needed).

Session 3: Group alignment exercise (60 minutes)

Purpose: Surfaces risks, hopes, and fears from the development team, including
the product owner, technical lead, and contracting officer representative. Some
exercises include Assumptions and Risks, or Hopes and Fears.

RESOURCES 143

DAY 3

Vendor asynchronous time (half to full day)

Purpose: Gives the vendor time to read over materials and prepare questions for
future sessions.

DAY 4

Session 1: User research findings (60 minutes)

Purpose: For review of any user research already conducted, including methods
and user groups who’ve already been contacted, and to begin discussing how
findings from the user research should inform the future build.

Session 2: Technical overview of constraints and architecture
(60 minutes)
Purpose: Describes the agency’s technical landscape and any limitations that

the development team may encounter. May also include an overview of the
Authorization to Operate (ATO) process and other compliance requirements.

DAY 5

Session 1: Write team charter (60 minutes)

Purpose: Government and vendor team discuss how they want to work together
and make decisions.

Session 2: Open working session (60 minutes)

Purpose: Allows the vendor to select the topic area and lead this session.

https://methods.18f.gov/discover/hopes-and-fears/

144 DE-RISKING GOVERNMENT TECHNOLOGY RESOURCES 145

Sam ple Quallty Assessment Deliverable | Performance Acceptable Method of
su rvei I Ia nce P I an (QAS P) Standard(s) Quality Level Assessment
Security Open Web Application Code submitted Evidence of
Security Project must be free of automated testing
(OWASP) Application medium- and per OWASP
Deliverable Performance Acceptable Method of Security Verification high-level static
Standard(s) Quality Level Assessment Standard 4.0.3 and dynamic
Tested code | Code delivered under Minimum of 90% | Automated testing security _
vulnerabilities
the order must have test coverage of
substantial test code all code User Usability testing and Artifacts from Demonstrated
coverage and a clean research other user research usability testing evidence of user
code base methods are conducted | and/or other research best
. . . at regular intervals research methods | practices
Properly Meets acceptable quality | 0 linting errgrs Styllr?g standards throughout the with end users
styled code level and 0 warnings and linters development process are available at
Accessibility | Web Content 0 errors Automated and (not just at the beginning | the end of every
Accessibility Guidelines | reported using manual testing or end) applicable sprint
2.2 — ‘AN standards an automated in accordance
scanner, and 0 with the vendor’s
errors reported in research plan

manual testing

Deployed Code must successfully | Successful build | Live demonstration
code build and deploy into a with a single

staging environment command
Documented | All dependencies are Vendor provides Manual review
code listed and the licenses documentation

are documented

Major functionality in the
software/source code

is documented in plain
language

Individual methods are
documented in-line using
comments that permit
the use of documentation
generation tools such as
JSDoc

A system diagram is
provided

https://jsdoc.app/
https://www.w3.org/TR/WCAG22/
https://owasp.org/www-project-application-security-verification-standard/

NOTES

	01	Introduction
	02	Understanding and choosing a software solution
	Commercially available off-the-shelf (COTS) software
	Custom software
	“Unrecognizably modified off-the-shelf” (UMOTS) software
	A cautionary note on no-code and low-code software

	03	Four key principles for effective custom software development
	Principle #1: Understand and commit to modern software development practices.
	Principle #2: Use performance-based services contracting
	Principle #3: Identify and empower a full-time, in-house product owner to lead the project
	Principle #4: Set the team up for success

	04	Buying custom software development services
	Writing a solicitation for a performance-based services contract
	Budgeting for custom software development

	05	Working with a vendor development team
	Introduction to vendor management
	Leading product direction
	Setting up the vendor relationship
	Reviewing the vendor’s work
	Maintaining a healthy vendor relationship

	06	Conclusion
	07	Resources
	How to conduct market research
	How to evaluate proposals and bids
	Evaluator worksheet
	Best practices for open source software security
	Sample verbal interview questions
	Sample kick-off week agenda
	Sample Quality Assessment Surveillance Plan (QASP)

